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0: About the book
This is an up-to-date book about Kubernetes. It’s relatively short, and it’s straight-to-the-point.

Let me be clear about this, as I don’t want to mislead people… This is not a deep dive, and it does not attempt
to cover everything. This is an easy-to-read book that will get you up-to-speed with Kubernetes fast!

Paperback

There are a few different versions of the paperback available:

• I self-publish paperback copies on Amazon in as many markets as possible
• A special-edition paperback is available for the Indian sub-continent via Shroff Publishers
• A simplified Chinese paperback is available via Posts & Telecom Press Co. LTD in China

Why is there a special paperback edition for the Indian sub-continent?

At the time I wrote the book, the Amazon self-publish service was not available in India. This meant I did not
have a way to get paperback copies to readers in India. I considered several options and decided to partner with
Shroff Publishers who have made a low-cost paperback available to readers in the Indian sub-continent. I’m
grateful to Shroff for helping me make the book available to as many readers as possible.

Audio book

There’s a highly entertaining audio version of the March 2019 edition available from Audible. This edition has
a few minor tweaks to the examples and labs so that they are easier to follow in an audio book. But aside from
that, you get the full experience.

eBook and Kindle editions

The easiest place to get an electronic copy is leanpub.com. It’s a slick platform and updates are free and simple.

You can also get a Kindle edition from Amazon, which also entitles you to free updates. However, Kindle is
notoriously bad at delivering updates. If you have problems getting updates to your Kindle edition, contact
Kindle Support and they’ll resolve the issue.

Feedback

If you liked the book and it added value, please be kind enough to share the love by recommending it to a friend
and leaving a review on Amazon (you can leave an Amazon review even if you bought it somewhere else).
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Why should anyone read this book or care about Kubernetes?

Kubernetes is white-hot, and Kubernetes skills are in high demand. So, if you want to push ahead with your
career and work with a technology that’s shaping the future, you need to read this book. If you don’t care about
your career and are fine being left behind, don’t read it. It’s the truth.

Should I buy the book if I’ve already watched your video
training courses?

Kubernetes is Kubernetes. So yes, there’s obviously similarities between my books and video courses. But reading
books and watching videos are totally different experiences and have very different impacts on learning. In my
opinion, videos are more fun, but books are easier to make notes in and flick through when you’re trying to find
something.

If I was you, I’d watch the videos and get the book. They complement each other, and learning via multiple
methods is a proven strategy.

Some of my Video courses:

• Getting Started with Kubernetes (pluralsight.com)
• Kubernetes Deep Dive (acloud.guru)
• Kubernetes 101 (nigelpoulton.com)
• Docker Deep Dive (pluralsight.com)

Free updates to the book

I’ve done everything I can to make sure your investment in this book is maximised to the fullest extent.

All Kindle and Leanpub customers receive all updates at no extra cost. Updates work well on Leanpub, but it’s a
different story on Kindle. Many readers complain that their Kindle devices don’t get access to updates. This is a
common issue, and one that is easily resolved by contacting Kindle Support.

If you buy a paperback version from Amazon.com, you can get the Kindle version at the discounted price of
$2.99. This is done via the Kindle Matchbook program. Unfortunately, Kindle Matchbook is only available in the
US, and it’s buggy — sometimes the Kindle Matchbook icon doesn’t appear on the book’s Amazon selling page.
Contact Kindle Support if you have issues like this and they’ll sort things out.

Things will be different if you buy the book through other channels, as I have no control over them. I’m a techie,
not a book publisher ;-)

The book’s GitHub repo

The book has a GitHub repo with all of the YAML code and examples used throughout the book:

https://github.com/nigelpoulton/TheK8sBook
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Versions of the book

Kubernetes is developing fast! As a result, the value of a book like this is inversely proportional to how old it is.
Whoa, that’s a mouthful. Put in other words, the older any Kubernetes book is, the less valuable it is. With this
in mind, I’m committed to updating the book at least once per year. And when I say “update”, I mean real
updates — every word and concept is reviewed, and every example is tested and updated. I’m 100% committed
to making this book the best Kubernetes book in the world.

If an update every year seems like a lot… welcome to the new normal.

We no longer live in a world where a 2-year-old technology book is valuable. In fact, I question the value of a
1-year-old book on a topic that’s developing as fast as Kubernetes. Don’t get me wrong, as an author I’d love to
write a book that was useful for 5 years. But that’s not the world we live in. Again… welcome to the new normal.

• Version 5 November 2019. All content updated and examples tested on Kubernetes 1.16.2. Added new
chapter on ConfigMaps. Moved Chapter 8 to the end as an appendix and added overview of service mesh
technology to the appendix.

• Version 4 March 2019. All content updated and all examples tested on the latest versions of Kubernetes.
Added new Storage Chapter. Added new real-world security section with two new chapters.

• Version 3 November 2018. Re-ordered some chapters for better flow. Removed the ReplicaSets chapter
and shifted that content to an improved Deployments chapter. Added new chapter giving overview of
other major concepts not covered in dedicated chapters.

• Version 2.2 January 2018. Fixed a few typos, added several clarifications, and added a couple of new
diagrams.

• Version 2.1December 2017. Fixed a few typos and updated Figures 6.11 and 6.12 to include missing labels.
• Version 2. October 2017. Added new chapter on ReplicaSets. Added significant changes to Pods chapter.
Fixed typos and made a few other minor updates to existing chapters.

• Version 1 July 2017. Initial version.



1: Kubernetes primer
This chapter is split into two main sections.

• Kubernetes background – where it came from etc.
• Kubernetes as the Operating System of the cloud

Kubernetes background

Kubernetes is an application orchestrator. For the most part, it orchestrates containerized cloud-native microser-
vices apps. How about that for a sentence full of buzzwords!

You’ll come across those terms a lot as you work with Kubernetes, so let’s take a minute to explain what each
one means.

What is an orchestrator

An orchestrator is a system that deploys and manages applications. It can deploy your applications and
dynamically respond to changes. For example, Kubernetes can:

• deploy your application
• scale it up and down dynamically according to demand
• self-heal it when things break
• perform zero-downtime rolling updates and rollbacks
• and more

And the best part about Kubernetes… it can do all of that without you having to supervise or get involved in
decisions. Obviously you have to set things up in the first place, but once you’ve done that, you can sit back and
let Kubernetes work its magic.

What is a containerised app

A containerized application is an app that runs in a container.

Before we had containers, applications ran on physical servers or in virtual machines. Containers are the next
iteration of how we package and run our apps, and they’re faster, more lightweight, and more suited to modern
business requirements than servers and virtual machines.

Think of it this way:

• Applications ran on physical servers in the age of open-system (roughly the 1980s and 1990s)
• Applications ran in virtual machines in the age of virtual machines (2000s and into the 2010s)
• Applications run in containers in the cloud-native era (now)

While Kubernetes can orchestrate other workload types, including virtual machines and serverless functions, it’s
most commonly used to orchestrate containerised apps.



1: Kubernetes primer 5

What is a cloud-native app

A cloud-native application is an application that is designed to meet modern business demands (auto-scaling,
self-healing, rolling updates etc.) and can run on Kubernetes.

I feel like it’s important to be clear that cloud-native apps are not applications that will only run on a public
cloud. Yes, they absolutely can run on a public cloud, but they can run anywhere that you have Kubernetes –
even your on-premises data center.

What is a microservices app

A microservices app is a business application that is built from lots of small specialised parts that communicate
and form a meaningful application. For example, you might have an e-commerce app that comprises all of the
following small specialised components:

• web front-end
• catalog service
• shopping cart
• authentication service
• logging service
• persistent store
• more…

Each of these individual services is called a microservice. Typically, each can be coded and looked after by
a different team, and each can have its own release cadence and can be scaled independently of all others.
For example, you can patch and scale the logging microservice without affecting any of the other application
components.

Building applications this way is an important aspect of a cloud-native application.

With all of this in mind, let’s re-phrase that definition that was full of buzzwords…

Kubernetes deploys and manages (orchestrates) applications that are packaged and run as containers (container-
ized) and that are built in ways (cloud-native microservices) that allow them to scale, self-heal, and be updated
inline with modern business requirements.

We’ll talk about these concepts a lot throughout the book, but for now, this should help you understand some of
the main industry buzzwords.

Where did Kubernetes come from

Let’s start from the beginning…

Amazon Web Services (AWS) changed the world when it brought us modern-day cloud computing. Since then,
everyone else has been trying to catch-up.

One of the companies trying to catch-up was Google. Google has its own very good cloud, and needs a way to
abstract the value of AWS, and make it easier for potential customers to use the Google Cloud.
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Google has boatloads of experience working with containers at scale. For example, huge Google applications,
such as Search and Gmail, have been running at extreme scale on containers for a lot of years – since way before
Docker brought us easy-to-use containers. To orchestrate and manage these containerised apps, Google had a
couple of in-house proprietary systems. They took the lessons learned from these in-house systems, and created
a new platform called Kubernetes, and donated it to the newly formed Cloud Native Computing Foundation
(CNCF) in 2014 as an open-source project.

Figure 1.1

Since then, Kubernetes has become the most important cloud-native technology on the planet.

Like many of the modern cloud-native projects, it’s written in Go (Golang), it’s built in the open on GitHub (at
kubernetes/kubernetes), it’s actively discussed on the IRC channels, you can follow it on Twitter (@kubernete-
sio), and slack.k8s.io is a pretty good slack channel. There are also regular meetups and conferences all over
the planet.

Kubernetes and Docker

Kubernetes and Docker are complementary technologies. For example, it’s common to develop your applications
with Docker and use Kubernetes to orchestrate them in production.

In this model, you write your code in your favourite languages, then use Docker to package it, test it, and ship
it. But the final steps of deploying and running it is handled by Kubernetes.

At a high-level, you might have a Kubernetes cluster with 10 nodes to run your production applications. Behind
the scenes, each node is running Docker as its container runtime. This means that Docker is the low-level
technology that starts and stops the containerised applications. Kubernetes is the higher-level technology that
looks after the bigger picture, such as; deciding which nodes to run containers on, deciding when to scale up or
down, and executing updates.

Figure 1.2 shows a simple Kubernetes cluster with some nodes using Docker as the container runtime.

Figure 1.2

As can be seen in Figure 1.2, Docker isn’t the only container runtime that Kubernetes supports. In fact, Kubernetes
has a couple of features that abstract the container runtime (make it interchangeable):
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1. The Container Runtime Interface (CRI) is an abstraction layer that standardizes the way 3rd-party
container runtimes interface with Kubernetes. It allows the container runtime code to exist outside of
Kubernetes, but interface with it in a supported and standardized way.

2. Runtime Classes is a new feature that was introduced in Kubernetes 1.12 and promoted to beta in 1.14.
It allows for different classes of runtimes. For example, the gVisor or Kata Containers runtimes might
provide better workload isolation than the Docker and containerd runtimes.

At the time of writing, containerd is catching up to Docker as the most commonly used container runtime in
Kubernetes. It is a stripped-down version of Docker with just the stuff that Kubernetes needs. It’s pronounced
container dee.

While all of this is interesting, it’s low-level stuff that shouldn’t impact your Kubernetes learning experience. For
example, whichever container runtime you use, the regular Kubernetes commands and patterns will continue to
work as normal.

What about Kubernetes vs Docker Swarm

In 2016 and 2017 we had the orchestrator wars where Docker Swarm, Mesosphere DCOS, and Kubernetes
competed to become the de-facto container orchestrator. To cut a long story short, Kubernetes won.

It’s true that Docker Swarm and other container orchestrators still exist, but their development and market-share
are small compared to Kubernetes.

Kubernetes and Borg: Resistance is futile!

There’s a good chance you’ll hear people talk about how Kubernetes relates to Google’s Borg andOmega systems.

As previously mentioned, Google has been running containers at scale for a long time – apparently crunching
through billions of containers a week. So yes, Google has been running things like search, Gmail, and GFS on
lots of containers for a very long time.

Orchestrating these containerised apps was the job of a couple of in-house Google technologies called Borg
and Omega. So, it’s not a huge stretch to make the connection with Kubernetes – all three are in the game of
orchestrating containers at scale, and they’re all related to Google.

However, it’s important to understand that Kubernetes is not an open-sourced version of Borg or Omega. It’s
more like Kubernetes shares its DNA and family history with Borg and Omega. A bit like this… In the beginning
was Borg, and Borg begat Omega. Omega knew the open-source community and begat her Kubernetes ;-)

Figure 1.3 - Shared DNA
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The point is, all three are separate, but all three are related. In fact, some of the people who built Borg and Omega
are involved in building Kubernetes. So, although Kubernetes was built from scratch, it leverages much of what
was learned at Google with Borg and Omega.

As things stand, Kubernetes is an open-source project donated to the CNCF in 2014, it’s licensed under the Apache
2.0 license, version 1.0 shipped way back in July 2015, and at-the-time-of-writing, we’ve already passed version
1.16.

Kubernetes – what’s in the name

The name Kubernetes (koo-ber-net-eez) comes from the Greek word meaning Helmsman – the person who
steers a seafaring ship. This theme is reflected in the logo.

Figure 1.4 - The Kubernetes logo

Apparently, some of the people involved in the creation of Kubernetes wanted to call it Seven of Nine. If you
know your Star Trek, you’ll know that Seven of Nine is a female Borg rescued by the crew of the USS Voyager
under the command of Captain Kathryn Janeway. Sadly, copyright laws prevented it from being called Seven of
Nine. However, the seven spokes on the logo are a tip-of-the-hat to Seven of Nine.

One last thing about the name before moving on. You’ll often see Kubernetes shortened to K8s (pronounced
“Kates”). The number 8 replaces the 8 characters between the K and the s – great for tweets and lazy typists like
me ;-)

The operating system of the cloud

Kubernetes has emerged as the de facto platform for deploying and managing cloud-native applications. In many
ways, it’s like an operating system (OS) for the cloud. Consider this:

• You install a traditional OS (Linux or Windows) on a server, and the OS abstracts the physical server’s
resources and schedules processes etc.

• You install Kubernetes on a cloud, and it abstracts the cloud’s resources and schedules the various
microservices of cloud-native applications

In the same way that Linux abstracts the hardware differences of different server platforms, Kubernetes abstracts
the differences between different private and public clouds. Net result… as long as you’re running Kubernetes, it
doesn’t matter if the underlying systems are on premises in your own data center, edge clusters, or in the public
cloud.
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With this in mind, Kubernetes enables a true hybrid cloud, allowing you to seamlessly move and balance
workloads across multiple different public and private cloud infrastructures. You can also migrate to and from
different clouds, meaning you can choose a cloud today and not have to stick with that decision for the rest of
your life.

Cloud scale

Generally speaking, cloud-native microservices applications make our previous scalability challenges look easy
– we’ve just said that Google goes through billions of containers per week!

That’s great, but most of us aren’t the size of Google. What about the rest of us?

Well… as a general rule, if your legacy apps have hundreds of VMs, there’s a good chance your containerized
cloud-native apps will have thousands of containers. With this in mind, we desperately need help managing
them.

Say hello to Kubernetes.

Also, we live in a business and technology world that is increasingly fragmented and in a constant state of
disruption. With this in mind, we desperately need a framework and platform that is widely accepted and hides
the complexity.

Again, say hello to Kubernetes.

Application scheduling

A typical computer is a collection of CPU, memory, storage, and networking. But modern operating systems
have done a great job abstracting most of that. For example, how many developers care which CPU core or exact
memory address their application uses? Not many, we let the OS take care of things like that. And it’s a good
thing, it’s made the world of application development a far friendlier place.

Kubernetes does a similar thing with cloud and data center resources. At a high-level, a cloud or data center is a
pool of compute, network and storage. Kubernetes abstracts it. This meanswe don’t have hard codewhich node or
storage volume our applications run on, we don’t even have to care which cloud they run on – we let Kubernetes
take care of that. Gone are the days of naming your servers, mapping storage volumes in a spreadsheet, and
otherwise treating your infrastructure assets like pets. Systems like Kubernetes don’t care. Gone are the days of
taking your app and saying “Run this part of the app on this exact node, with this IP, on this specific volume…“. In
the cloud-native Kubernetes world, we just say “Hey Kubernetes, here’s an app. Please deploy it and make sure
it keeps running…“.

A quick analogy…

Consider the process of sending goods via a courier service.

You package the goods in the courier’s standard packaging, put a label on it, and hand it over to the courier. The
courier is responsible for everything. This includes; all the complex logistics of which planes and trucks it goes
on, which highways to use, and who the drivers should be etc. They also provide services that let you do things
like track your package and make delivery changes. The point is, the only thing that you have to do is package
and label the goods, and the courier abstracts everything else and takes care of scheduling and other logistics.

It’s the same for apps on Kubernetes. You package the app as a container, give it a declarative manifest, and let
Kubernetes take care of deploying it and keeping it running. You also get a rich set of tools and APIs that let you
introspect (observe and examine) your app. It’s a beautiful thing.
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Chapter summary

Kubernetes was created by Google based on lessons learned running containers at scale for many years. It was
donated to the community as an open-source project and is now the industry standard API for deploying and
managing cloud-native applications. It runs on any cloud or on-premises data center and abstracts the underlying
infrastructure. This allows you to build hybrid clouds, as well as migrate easily between cloud platforms. It’s
open-sourced under the Apache 2.0 license and lives within the Cloud Native Computing Foundation (CNCF).

Tip!

Kubernetes is a fast-moving project under active development. But don’t let this put you off – embrace it.Change
is the new normal.

To help you keep up-to-date, I suggest you subscribe to a couple of my YouTube channels:

• #KubernetesMoment: a short weekly video discussing or explaining something about Kubernetes
• Kubernetes this Month: A monthly roundup of all the important things going on in the Kubernetes world

You should also check out:

• My website at nigelpoulton.com
• My video training courses at pluralsight.com and acloud.guru
• My hands-on learning at MSB (msb.com)
• KubeCon and your local Kubernetes and cloud-native meetups



2: Kubernetes principles of operation
In this chapter, you’ll learn about the major components required to build a Kubernetes cluster and deploy an
app. The aim is to give you an overview of the major concepts. So don’t worry if you don’t understand everything
straight away, we’ll cover most things again as we progress through the book.

We’ll divide the chapter as follows:

• Kubernetes from 40K feet
• Masters and nodes
• Packaging apps
• Declarative configuration and desired state
• Pods
• Deployments
• Services

Kubernetes from 40K feet

At the highest level, Kubernetes is two things:

• A cluster for running applications
• An orchestrator of cloud-native microservices apps

Kubernetes as a cluster

Kubernetes is like any other cluster – a bunch of nodes and a control plane. The control plane exposes an API, has
a scheduler for assigning work to nodes, and state is recorded in a persistent store. Nodes are where application
services run.

It can be useful to think of the control plane as the brains of the cluster, and the nodes as the muscle. In this
analogy, the control plane is the brains because it implements all of the important features such as auto-scaling
and zero-downtime rolling updates. The nodes are the muscle because they do the every-day hard work of
executing application code.

Kubernetes as an orchestrator

Orchestrator is just a fancy word for a system that takes care of deploying and managing applications.

Let’s look at a quick analogy.

In the real world, a football (soccer) team is made of individuals. No two individuals are the same, and each has
a different role to play in the team – some defend, some attack, some are great at passing, some tackle, some
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shoot… Along comes the coach, and he or she gives everyone a position and organizes them into a team with a
purpose. We go from Figure 2.1 to Figure 2.2.

Figure 2.1

Figure 2.2

The coach also makes sure the team maintains its formation, sticks to the game-plan, and deals with any injuries
and other changes in circumstance.

Well guess what… microservices apps on Kubernetes are the same.

Stick with me on this…

We start out with lots of individual specialised services. Some serve web pages, some do authentication, some
perform searches, others persist data. Kubernetes comes along – a bit like the coach in the football analogy –-
organizes everything into a useful app and keeps things running smoothly. It even responds to events and other
changes.

In the sports world we call this coaching. In the application world we call it orchestration. Kubernetes orchestrates
cloud-native microservices applications.
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How it works

To make this happen, you start out with an app, package it up and give it to the cluster (Kubernetes). The cluster
is made up of one or more masters and a bunch of nodes.

The masters, sometimes called heads or head nodes, are in-charge of the cluster. This means they make the
scheduling decisions, perform monitoring, implement changes, respond to events, and more. For these reasons,
we often refer to the masters as the control plane.

The nodes are where application services run, and we sometimes call them the data plane. Each node has a
reporting line back to the masters, and constantly watches for new work assignments.

To run applications on a Kubernetes cluster we follow this simple pattern:

1. Write the application as small independent microservices in our favourite languages.
2. Package each microservice in its own container.
3. Wrap each container in its own Pod.
4. Deploy Pods to the cluster via higher-level controllers such as; Deployments, DaemonSets, StatefulSets,

CronJobs etc.

Now then… we’re still near the beginning of the book and you’re not expected to know what all of this means
yet. However, at a high-level, Deployments offer scalability and rolling updates, DaemonSets run one instance of
a service on every node in the cluster, StatefulSets are for stateful application components, and CronJobs are for
short-lived tasks that need to run at set times. There are more than these, but these will do for now.

Kubernetes likes to manage applications declaratively. This is a pattern where you describe how you want your
application to look and feel in a set of YAML files. You POST these files to Kubernetes, then sit back while
Kubernetes makes it all happen.

But it doesn’t stop there. Because the declarative pattern tells Kubernetes how an application should look,
Kubernetes can watch it and make sure things don’t stray from what you asked for. If something isn’t as it
should be, Kubernetes tries to fix it.

That’s the big picture. Let’s dig a bit deeper.

Masters and nodes

A Kubernetes cluster is made of masters and nodes. These are Linux hosts that can be virtual machines (VM),
bare metal servers in your data center, or instances in a private or public cloud.

Masters (control plane)

A Kubernetes master is a collection of system services that make up the control plane of the cluster.

The simplest setups run all the master services on a single host. However, this is only suitable for labs and test
environments. For production environments, multi-master high availability (HA) is a must have. This is why
the major cloud providers implement HA masters as part of their hosted Kubernetes platforms such as Azure
Kubernetes Service (AKS), AWS Elastic Kubernetes Service (EKS), and Google Kubernetes Engine (GKE).

Generally speaking, running 3 or 5 replicated masters in an HA configuration is recommended.

It’s also considered a good practice not to run user applications on masters. This allows masters to concentrate
entirely on managing the cluster.

Let’s take a quick look at the different master services that make up the control plane.
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The API server

The API server is the Grand Central Station of Kubernetes. All communication, between all components, must
go through the API server. We’ll get into the detail later in the book, but it’s important to understand that internal
system components, as well as external user components, all communicate via the same API.

It exposes a RESTful API that you POST YAML configuration files to over HTTPS. These YAML files, which we
sometimes call manifests, contain the desired state of your application. This desired state includes things like;
which container image to use, which ports to expose, and how many Pod replicas to run.

All requests to the API Server are subject to authentication and authorization checks, but once these are done,
the config in the YAML file is validated, persisted to the cluster store, and deployed to the cluster.

The cluster store

The cluster store is the only stateful part of the control plane, and it persistently stores the entire configuration
and state of the cluster. As such, it’s a vital component of the cluster – no cluster store, no cluster.

The cluster store is currently based on etcd, a popular distributed database. As it’s the single source of truth for
the cluster, you should run between 3-5 etcd replicas for high-availability, and you should provide adequate ways
to recover when things go wrong.

On the topic of availability, etcd prefers consistency over availability. This means that it will not tolerate a
split-brain situation and will halt updates to the cluster in order to maintain consistency. However, if etcd
becomes unavailable, applications running on the cluster should continue to work, you just won’t be able to
update anything.

As with all distributed databases, consistency of writes to the database is vital. For example, multiple writes to
the same value originating from different nodes needs to be handled. etcd uses the popular RAFT consensus
algorithm to accomplish this.

The controller manager

The controller manager implements all of the background control loops that monitor the cluster and respond to
events.

It’s a controller of controllers, meaning it spawns all of the independent control loops and monitors them.

Some of the control loops include; the node controller, the endpoints controller, and the replicaset controller. Each
one runs as a background watch-loop that is constantly watching the API Server for changes -– the aim of the
game is to ensure the current state of the cluster matches the desired state (more on this shortly).

The logic implemented by each control loop is effectively this:

1. Obtain desired state
2. Observe current state
3. Determine differences
4. Reconcile differences

This logic is at the heart of Kubernetes and declarative design patterns.

Each control loop is also extremely specialized and only interested in its own little corner of the Kubernetes
cluster. No attempt is made to over-complicate things by implementing awareness of other parts of the system
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– each control loop takes care of its own business and leaves everything else alone. This is key to the distributed
design of Kubernetes and adheres to the Unix philosophy of building complex systems from small specialized
parts.

Note: Throughout the book we’ll use terms like control loop, watch loop, and reconciliation loop to
mean the same thing.

The scheduler

At a high level, the scheduler watches the API server for new work tasks and assigns them to appropriate healthy
nodes. Behind the scenes, it implements complex logic that filters out nodes incapable of running the task, and
then ranks the nodes that are capable. The ranking system is complex, but the node with the highest-ranking
score is selected to run the task.

When identifying nodes that are capable of running a task, the scheduler performs various predicate checks. These
include; is the node tainted, are there any affinity or anti-affinity rules, is the required network port available on
the node, does the node have sufficient free resources etc. Any node incapable of running the task is ignored, and
the remaining nodes are ranked according to things such as; does the node already have the required image, how
much free resource does the node have, how many tasks is the node already running. Each criterion is worth
points, and the node with the most points is selected to run the task.

If the scheduler cannot find a suitable node, the task cannot be scheduled and is marked as pending.

The scheduler isn’t responsible for running tasks, just picking the nodes a task will run on.

The cloud controller manager

If you’re running your cluster on a supported public cloud platform, such as AWS, Azure, GCP, DO, IBM
Cloud etc. your control plane will be running a cloud controller manager. Its job is to manage integrations with
underlying cloud technologies and services such as, instances, load-balancers, and storage. For example, if your
application asks for an internet facing load-balancer, the cloud controller manager is involved in provisioning an
appropriate load-balancer on your cloud platform.

Control Plane summary

Kubernetes masters run all of the cluster’s control plane services. Think of it as the brains of the cluster where
all the control and scheduling decisions are made. Behind the scenes, a master is made up of lots of small
specialized control loops and services. These include the API server, the cluster store, the controller manager,
and the scheduler.

The API Server is the front-end into the control plane and all instructions and communication must go through
it. By default, it exposes a RESTful endpoint on port 443.

Figure 2.3 shows a high-level view of a Kubernetes master (control plane).
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Figure 2.3 - Kubernetes Master

Nodes

Nodes are the workers of a Kubernetes cluster. At a high-level they do three things:

1. Watch the API Server for new work assignments
2. Execute new work assignments
3. Report back to the control plane (via the API server)

As we can see from Figure 2.4, they’re a bit simpler than masters.

Figure 2.4 - Kubernetes Node (formerly Minion)

Let’s look at the three major components of a node.

Kubelet

The Kubelet is the star of the show on every node. It’s the main Kubernetes agent, and it runs on every node in
the cluster. In fact, it’s common to use the terms node and kubelet interchangeably.
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When you join a new node to a cluster, the process installs kubelet onto the node. The kubelet is then responsible
for registering the node with the cluster. Registration effectively pools the node’s CPU, memory, and storage into
the wider cluster pool.

One of the main jobs of the kubelet is to watch the API server for new work assignments. Any time it sees one,
it executes the task and maintains a reporting channel back to the control plane.

If a kubelet can’t run a particular task, it reports back to the master and lets the control plane decide what actions
to take. For example, if a Kubelet cannot execute a task, it is not responsible for finding another node to run it
on. It simply reports back to the control plane and the control plane decides what to do.

Container runtime

The Kubelet needs a container runtime to perform container-related tasks -– things like pulling images and
starting and stopping containers.

In the early days, Kubernetes had native support for a few container runtimes such as Docker. More recently, it
has moved to a plugin model called the Container Runtime Interface (CRI). At a high-level, the CRI masks the
internal machinery of Kubernetes and exposes a clean documented interface for 3rd-party container runtimes to
plug into.

There are lots of container runtimes available for Kubernetes. One popular example is cri-containerd. This is
a community-based open-source project porting the CNCF containerd runtime to the CRI interface. It has a lot
of support and is replacing Docker as the most popular container runtime used in Kubernetes.

Note: containerd (pronounced “container-dee”) is the container supervisor and runtime logic
stripped out from the Docker Engine. It was donated to the CNCF by Docker, Inc. and has a lot of
community support. Other CRI-compliant container runtimes exist.

Kube-proxy

The last piece of the node puzzle is the kube-proxy. This runs on every node in the cluster and is responsible for
local cluster networking. For example, it makes sure each node gets its own unique IP address, and implements
local IPTABLES or IPVS rules to handle routing and load-balancing of traffic on the Pod network.

Kubernetes DNS

As well as the various control plane and node components, every Kubernetes cluster has an internal DNS service
that is vital to operations.

The cluster’s DNS service has a static IP address that is hard-coded into every Pod on the cluster, meaning all
containers and Pods know how to find it. Every new service is automatically registered with the cluster’s DNS
so that all components in the cluster can find every Service by name. Some other components that are registered
with the cluster DNS are StatefulSets and the individual Pods that a StatefulSet manages.

Cluster DNS is based on CoreDNS (https://coredns.io/).

Now that we understand the fundamentals of masters and nodes, let’s switch gears and look at how we package
applications to run on Kubernetes.
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Packaging apps for Kubernetes

For an application to run on a Kubernetes cluster it needs to tick a few boxes. These include:

1. Packaged as a container
2. Wrapped in a Pod
3. Deployed via a declarative manifest file

It goes like this… You write an application service in a language of your choice. You build it into a container
image and store it in a registry. At this point, the application service is containerized.

Next, you define a Kubernetes Pod to run the containerized application. At the kind of high level we’re at, a Pod
is just a wrapper that allows a container to run on a Kubernetes cluster. Once you’ve defined the Pod, you’re
ready to deploy it on the cluster.

It is possible to run a standalone Pod on a Kubernetes cluster. But the preferred model is to deploy all Pods via
higher-level controllers. The most common controller is the Deployment. It offers scalability, self-healing, and
rolling updates. You define Deployments in YAML manifest files that specifies things like; which image to use
and how many replicas to deploy.

Figure 2.5 shows application code packaged as a container, running inside a Pod, managed by a Deployment
controller.

Figure 2.5

Once everything is defined in the Deployment YAML file, you POST it to the API Server as the desired state of
the application and let Kubernetes implement it.

Speaking of desired state…

The declarative model and desired state

The declarative model and the concept of desired state are at the very heart of Kubernetes.

In Kubernetes, the declarative model works like this:

1. Declare the desired state of an application (microservice) in a manifest file
2. POST it to the API server
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3. Kubernetes stores it in the cluster store as the application’s desired state
4. Kubernetes implements the desired state on the cluster
5. Kubernetes implements watch loops to make sure the current state of the application doesn’t vary from

the desired state

Let’s look at each step in a bit more detail.

Manifest files are written in simple YAML, and they tell Kubernetes how you want an application to look. This is
called the desired state. It includes things such as; which image to use, how many replicas to run, which network
ports to listen on, and how to perform updates.

Once you’ve created the manifest, you POST it to the API server. The most common way of doing this is with the
kubectl command-line utility. This sends the manifest to the control plane as an HTTP POST, usually on port
443.

Once the request is authenticated and authorized, Kubernetes inspects the manifest, identifies which controller
to send it to (e.g. the Deployments controller), and records the config in the cluster store as part of the cluster’s
overall desired state. Once this is done, the work gets scheduled on the cluster. This includes the hard work of
pulling images, starting containers, building networks, and starting the application’s processes.

Finally, Kubernetes utilizes background reconciliation loops that constantly monitor the state of the cluster. If the
current state of the cluster varies from the desired state, Kubernetes will perform whatever tasks are necessary
to reconcile the issue.

Figure 2.6

It’s important to understand that what we’ve described is the opposite of the traditional imperative model. The
imperative model is where you issue long lists of platform-specific commands to build things.

Not only is the declarative model a lot simpler than long scripts with lots of imperative commands, it also enables
self-healing, scaling, and lends itself to version control and self-documentation. It does this by telling the cluster
how things should look. If they stop looking like this, the cluster notices the discrepancy and does all of the hard
work to reconcile the situation.

But the declarative story doesn’t end there – things go wrong, and things change. When they do, the current
state of the cluster no longer matches the desired state. As soon as this happens, Kubernetes kicks into action
and attempts to bring the two back into harmony.

Let’s consider an example.

Declarative example

Assume you have an app with a desired state that includes 10 replicas of a web front-end Pod. If a node that was
running two replicas fails, the current state will be reduced to 8 replicas, but the desired state will still be 10. This
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will be observed by a reconciliation loop and Kubernetes will schedule two new replicas to bring the total back
up to 10.

The same thing will happen if you intentionally scale the desired number of replicas up or down. You could even
change the image you want to use. For example, if the app is currently using v2.00 of an image, and you update
the desired state to use v2.01, Kubernetes will notice the difference and go through the process of updating all
replicas so that they are using the new version specified in the new desired state.

To be clear. Instead of writing a long list of commands to go through the process of updating every replica to the
new version, you simply tell Kubernetes you want the new version, and Kubernetes does the hard work for us.

Despite how simple this might seem, it’s extremely powerful and at the very heart of how Kubernetes operates.
You give Kubernetes a declarative manifest that describes how you want an application to look. This forms
the basis of the application’s desired state. The Kubernetes control plane records it, implements it, and runs
background reconciliation loops that constantly check that what is running is what you’ve asked for. When
current state matches desired state, the world is a happy place. When it doesn’t, Kubernetes gets busy fixing it.

Pods

In the VMware world, the atomic unit of scheduling is the virtual machine (VM). In the Docker world, it’s the
container. Well… in the Kubernetes world, it’s the Pod.

It’s true that Kubernetes runs containerized apps. However, you cannot run a container directly on a Kubernetes
cluster – containers must always run inside of Pods.

Figure 2.7

Pods and containers

The very first thing to understand is that the term Pod comes from a pod of whales – in the English language
we call a group of whales a pod of whales. As the Docker logo is a whale, it makes sense that we call a group of
containers a Pod.

The simplest model is to run a single container per Pod. However, there are advanced use-cases that run multiple
containers inside a single Pod. These multi-container Pods are beyond the scope of what we’re discussing here,
but powerful examples include:

• Service meshes
• Web containers supported by a helper container that pulls the latest content
• Containers with a tightly coupled log scraper
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The point is, a Kubernetes Pod is a construct for running one or more containers. Figure 2.8 shows a multi-
container Pod.

Figure 2.8

Pod anatomy

At the highest-level, a Pod is a ring-fenced environment to run containers. The Pod itself doesn’t actually run
anything, it’s just a sandbox for hosting containers. Keeping it high level, you ring-fence an area of the host OS,
build a network stack, create a bunch of kernel namespaces, and run one or more containers in it. That’s a Pod.

If you’re running multiple containers in a Pod, they all share the same Pod environment. This includes things
like the IPC namespace, shared memory, volumes, network stack and more. As an example, this means that all
containers in the same Pod will share the same IP address (the Pod’s IP). This is shown in Figure 2.9.

Figure 2.9

If two containers in the same Pod need to talk to each other (container-to-container within the Pod) they can use
ports on the Pod’s localhost interface as shown in Figure 2.10.
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Figure 2.10

Multi-container Pods are ideal when you have requirements for tightly coupled containers that may need to
share memory and storage. However, if you don’t need to tightly couple your containers, you should put them in
their own Pods and loosely couple them over the network. This keeps things clean by having each Pod dedicated
to a single task. It also creates a lot of network traffic that is un-encrypted. You should seriously consider using
a service mesh to secure traffic between Pods and application services.

Pods as the unit of scaling

Pods are also the minimum unit of scheduling in Kubernetes. If you need to scale your app, you add or remove
Pods. You do not scale by adding more containers to an existing Pod. Multi-container Pods are only for situations
where two different, but complimentary, containers need to share resources. Figure 2.11 shows how to scale the
nginx front-end of an app using multiple Pods as the unit of scaling.

Figure 2.11 - Scaling with Pods

Pods - atomic operations

The deployment of a Pod is an atomic operation. This means that a Pod is only considered ready for service when
all of its containers are up and running. There is never a situation where a partially deployed Pod will service
requests. The entire Pod either comes up and is put into service, or it doesn’t, and it fails.
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A single Pod can only be scheduled to a single node. This is also true of multi-container Pods – all containers in
the same Pod will run on the same node.

Pod lifecycle

Pods are mortal. They’re created, they live, and they die. If they die unexpectedly, you don’t bring them back to
life. Instead, Kubernetes starts a new one in its place. However, even though the new Pod looks, smells, and feels
like the old one, it isn’t. It’s a shiny new Pod with a shiny new ID and IP address.

This has implications on how you should design your applications. Don’t design them so they are tightly coupled
to a particular instance of a Pod. Instead, design them so that when Pods fail, a totally new one (with a new ID
and IP address) can pop up somewhere else in the cluster and seamlessly take its place.

Deployments

Most of the time you’ll deploy Pods indirectly via a higher-level controller. Examples of higher-level controllers
include; Deployments, DaemonSets, and StatefulSets.

For example, a Deployment is a higher-level Kubernetes object that wraps around a particular Pod and adds
features such as scaling, zero-downtime updates, and versioned rollbacks.

Behind the scenes, Deployments, DaemonSets and StatefulSets implement a controller and a watch loop that is
constantly observing the cluster making sure that current state matches desired state.

Deployments have existed in Kubernetes since version 1.2 and were promoted to GA (stable) in 1.9. You’ll see
them a lot.

Services and network stable networking

We’ve just learned that Pods are mortal and can die. However, if they’re managed via Deployments or
DaemonSets, they get replaced when they fail. But replacements come with totally different IP addresses. This
also happens when you perform scaling operations – scaling up adds new Pods with new IP addresses, whereas
scaling down takes existing Pods away. Events like these cause a lot of IP churn.

The point I’m making is that Pods are unreliable, which poses a challenge… Assume you’ve got a microservices
app with a bunch of Pods performing video rendering. How will this work if other parts of the app that need to
use the rendering service cannot rely on the rendering Pods being there when they need them?

This is where Services come in to play. Services provide reliable networking for a set of Pods.

Figure 2.12 shows the uploader microservice talking to the renderer microservice via a Kubernetes Service object.
The Kubernetes Service is providing a reliable name and IP, and is load-balancing requests to the two renderer
Pods behind it.
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Figure 2.12

Digging into a bit more detail. Services are fully-fledged objects in the Kubernetes API – just like Pods and
Deployments. They have a front-end that consists of a stable DNS name, IP address, and port. On the back-end,
they load-balance across a dynamic set of Pods. As Pods come and go, the Service observes this, automatically
updates itself, and continues to provide that stable networking endpoint.

The same applies if you scale the number of Pods up or down. New Pods are seamlessly added to the Service and
will receive traffic. Terminated Pods are seamlessly removed from the Service and will not receive traffic.

That’s the job of a Service – it’s a stable network abstraction point that provides TCP and UDP load-balancing
across a dynamic set of Pods.

As they operate at the TCP and UDP layer, Services do not possess application intelligence and cannot provide
application-layer host and path routing. For that, you need an Ingress, which understands HTTP and provides
host and path-based routing.

Connecting Pods to Services

Services use labels and a label selector to know which set of Pods to load-balance traffic to. The Service has a
label selector that is a list of all the labels a Pod must possess in order for it to receive traffic from the Service.

Figure 2.13 shows a Service configured to send traffic to all Pods on the cluster tagged with the following three
labels:

• zone=prod
• env=be
• ver=1.3
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Both Pods in the diagram have all three labels, so the Service will load-balance traffic to them.

Figure 2.13

Figure 2.14 shows a similar setup. However, an additional Pod, on the right, does not match the set of labels
configured in the Service’s label selector. This means the Service will not load balance requests to it.

Figure 2.14

One final thing about Services. They only send traffic to healthy Pods. This means a Pod that is failing health-
checks will not receive traffic from the Service.

That’s the basics. Services bring stable IP addresses and DNS names to the unstable world of Pods.

Chapter summary

In this chapter, we introduced some of the major components of a Kubernetes cluster.

The masters are where the control plane components run. Under-the-hood, there are several system-services,
including the API Server that exposes a public REST interface to the cluster. Masters make all of the deployment
and scheduling decisions, and multi-master HA is important for production-grade environments.
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Nodes are where user applications run. Each node runs a service called the kubelet that registers the node
with the cluster and communicates with the API Server. It watches the API for new work tasks and maintains
a reporting channel. Nodes also have a container runtime and the kube-proxy service. The container runtime,
such as Docker or containerd, is responsible for all container-related operations. The kube-proxy is responsible
for networking on the node.

We also talked about some of themajor Kubernetes API objects such as Pods, Deployments, and Services. The Pod
is the basic building-block. Deployments add self-healing, scaling and updates. Services add stable networking
and load-balancing.

Now that we’ve covered the basics, let’s get into the detail.



3: Installing Kubernetes
In this chapter, we’ll look at a few quick ways to install Kubernetes.

There are three typical ways of getting a Kubernetes:

1. Test playground
2. Hosted Kubernetes
3. DIY installation

Kubernetes playgrounds

Test playgrounds are the simplest ways to get Kubernetes, but they’re not intended for production. Common
examples includeMagic Sandbox (msb.com), Play with Kubernetes (https://labs.play-with-k8s.com/), and Docker
Desktop.

With Magic Sandbox, you register for an account and login. That’s it, you’ve instantly got a fully working multi-
node private cluster that’s ready to go. You also get curated lessons and hands-on labs.

Play with Kubernetes requires you to login with a GitHub or Docker Hub account and follow a few simple steps
to build a cluster that lasts for 4 hours.

Docker Desktop is a free desktop application from Docker, Inc. You download and run the installer, and after a
few clicks you’ve got a single-node development cluster on your laptop.

Hosted Kubernetes

Most of the major cloud platforms now offer their own hosted Kubernetes services. In this model, control plane
(masters) components are managed by your cloud platform. For example, your cloud provider makes sure the
control plane is highly available, performant, and handles all control plane upgrades. On the flipside, you have
less control over versions and have limited options to customise.

Irrespective of pros and cons, hosted Kubernetes services are as close to zero-effort production-grade Kubernetes
as you will get. In fact, the Google Kubernetes Engine (GKE) lets you deploy a production-grade Kubernetes
cluster and the Istio service mesh with just a few simple clicks. Other clouds offer similar services:

• AWS: Elastic Kubernetes Service (EKS)
• Azure: Azure Kubernetes Service (AKS)
• DigitalOcean: DigitalOcean Kubernetes
• IBM Cloud: IBM Cloud Kubernetes Service
• Google Cloud Platform: Google Kubernetes Engine (GKE)

With these offerings in mind, ask yourself the following question before building your own Kubernetes cluster: Is
building and managing your own Kubernetes cluster the best use of your time and other resources? If the answer
isn’t “Hell yes”, I strongly suggest you consider a hosted service.
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DIY Kubernetes clusters

By far the hardest way to get a Kubernetes cluster is to build one yourself.

Yes, DIY installations are a lot easier than they used to be, but they’re still hard. However, they provide the most
flexibility and give you ultimate control over your configuration – which can be a good thing and a bad thing.

Installing Kubernetes

There are a ridiculous number of different ways to get a Kubernetes cluster and we’re not trying to show them all
(there are probably hundreds). The methods shown here are simple and I’ve chosen them because they’re quick
and easy ways to get a Kubernetes cluster that you can follow to most of the examples with.

All of the examples will work on Magic Sandbox and GKE, and most of them will work on other installations.
Ingress examples and volumes may not work on platforms like Docker Desktop and Play with Kubernetes.

We’ll look at the following:

• Play with Kubernetes (PWK)
• Docker Desktop: local development cluster on your laptop
• Google Kubernetes Engine (GKE): production-grade hosted cluster

Play with Kubernetes

Play with Kubernetes (PWK) is a quick and simple way to get your hands on a development Kubernetes cluster.
All you need is a computer, an internet connection, and an account on Docker Hub or GitHub.

However, it has a few of limitations to be aware of.

• it’s time-limited – you get a cluster that lasts for 4 hours
• It lacks some integrations with external services such as cloud-based load-balancers and volumes
• It often suffers from capacity issues (it’s offered as a free service)

Let’s see what it looks like.

1. Point your browser at https://https://labs.play-with-k8s.com/
2. Login with your GitHub or Docker Hub account and click Start
3. Click + ADD NEW INSTANCE from the navigation pane on the left of your browser

You will be presented with a terminal window in the right of your browser. This is a Kubernetes node
(node1).

4. Run a few commands to see some of the components pre-installed on the node.
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$ docker version
Docker version 18.09.0-ce...

$ kubectl version --output=yaml
clientVersion:
...
major: "1"
minor: "11"

As the output shows, the node already has Docker and kubectl (the Kubernetes client) pre-installed. Other
tools, including kubeadm, are also pre-installed. More on these tools later.

It’s also worth noting that although the command prompt is a $, you’re actually running as root. You can
confirm this by running whoami or id.

5. Run the provided kubeadm init command to initialize a new cluster

When you added a new instance in step 3, PWK gave you a short list of commands to initialize a new
Kubernetes cluster. One of these was kubeadm init.... Running this commandwill initialize a new cluster
and configure the API server to listen on the correct IP interface.

You may be able to specify the version of Kubernetes to install by adding the --kubernetes-version flag
to the command. The latest versions can be seen at https://github.com/kubernetes/kubernetes/releases.
Not all versions work with PWK.

$ kubeadm init --apiserver-advertise-address $(hostname -i)
[kubeadm] WARNING: kubeadm is in beta, do not use it for prod...
[init] Using Kubernetes version: v1.11.1
[init] Using Authorization modes: [Node RBAC]
<Snip>
Your Kubernetes master has initialized successfully!
<Snip>

Congratulations! You have a brand new single-node Kubernetes cluster. The node that you executed the
command from (node1) is initialized as the master.

The output of the kubeadm init gives you a short list of commands it wants you to run. These will copy
the Kubernetes config file and set permissions. You can ignore these, as PWK has already configured them
for you. Feel free to poke around inside of $HOME/.kube.

6. Verify the cluster with the following kubectl command.

$ kubectl get nodes
NAME STATUS AGE VERSION
node1 NotReady 1m v1.11.3

The output shows a single-node Kubernetes cluster. However, the status of the node is NotReady. This is
because you haven’t configured the Pod network yet. When you first logged on to the PWK node, you
were given three commands to configure the cluster. So far, you’ve only executed the first one (kubeadm
init...).

7. Initialize the Pod network (cluster networking).

Copy the second command from the list of three commands that were printed on the screen when you
first created node1 (it will be a kubectl apply command). Paste it onto a new line in the terminal. In the
book, the command may wrap over multiple lines and insert backslashes (\).
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$ kubectl apply -n kube-system -f \
"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 | tr -d '\n')"

serviceaccount "weave-net" created
clusterrole "weave-net" created
clusterrolebinding "weave-net" created
role "weave-net" created
rolebinding "weave-net" created
daemonset "weave-net" created

8. Verify the cluster again to see if node1 has changed to Ready (it may take a few seconds to transition to
ready).

$ kubectl get nodes
NAME STATUS AGE VERSION
node1 Ready 2m v1.11.2

Now that the Pod network has been initialized and the control plane is Ready, you’re ready to add some
worker nodes.

9. Copy the long kubeadm join that was displayed as part of the output from the kubeadm init command.

When you initialized the new cluster with kubeadm init, the final output of the command listed a kubeadm
join command to use when adding nodes. This command includes the cluster join-token, the IP socket
that the API server is listening on, and other bits required to join a new node to the cluster. Copy this
command and be ready to paste it into the terminal of a new node (node2).

10. Click the + ADD NEW INSTANCE button in the left pane of the PWK window.

You will be given a new node called node2.

1. Paste the kubeadm join command into the terminal of node2.

The join-token and IP address will be different in your environment.

$ kubeadm join --token 948f32.79bd6c8e951cf122 10.0.29.3:6443...
Initializing machine ID from random generator.
[preflight] Skipping pre-flight checks
<Snip>
Node join complete:
* Certificate signing request sent to master and response received.
* Kubelet informed of new secure connection details.

1. Switch back to node1 and run another kubectl get nodes
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$ kubectl get nodes
NAME STATUS AGE VERSION
node1 Ready 5m v1.11.2
node2 Ready 1m v1.11.2

Your Kubernetes cluster now has two nodes – one master and one worker node.

Feel free to add more nodes.

Congratulations! You have a fully working Kubernetes cluster that you can use as a test lab.

It’s worth pointing out that node1 was initialized as the Kubernetes master and additional nodes will join the
cluster as * worker nodes. PWK usually puts a blue icon next to *masters and a transparent one next to nodes.
This helps you identify which is which.

Finally, PWK sessions only last for 4 hours and are obviously not intended for production use.

Have fun!

Docker Desktop

Docker Desktop is a great way to get a local development cluster on your Mac or Windows laptop. With a few
easy steps, you get a single-node Kubernetes cluster that you can develop and test with.

It works by creating a virtual machine (VM) on your laptop and starting a single-node Kubernetes cluster inside
that VM. It also configures a kubectl client with a context that allows it to talk to the cluster. Finally, you get a
simple GUI that lets you perform basic operations such as switching between all of your kubectl contexts.

Note: A kubectl context is a bunch of settings that kubectl which cluster to send commands to
and which credentials to authenticate with.

1. Point your web browser to www.docker.com and choose Products > Desktop.
2. Follow the links to download for either Mac or Windows.

You may need to login to the Docker Store. Accounts are free, and so is the product.
3. Open the installer and follow the simple installation instructions.

Once the installer is complete, you’ll get a whale icon on the Windows task bar, or the menu bar on a
Mac.

4. Click the whale icon (you may need to right-click it), go to Settings and enable Kubernetes from the
Kubernetes tab.

You can open a terminal window and see your cluster:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-for-desktop Ready master 28d v1.16.1

Congratulations, you now have a local development cluster.
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Google Kubernetes Engine (GKE)

Google Kubernetes Engine is a hosted Kubernetes service that runs on the Google Cloud Platform (GCP). Like
most hosted Kubernetes services, it provides:

• A fast and easy way to get a production-grade Kubernetes cluster
• A managed control plane (you do not manage the masters)
• Itemized billing

Warning: GKE and other hosted Kubernetes services are not free. Some services might provide a
free tier or an amount of initial free credit. However, generally speaking, you have to pay to use
them.

Configuring GKE

To work with GKE you’ll need an account on the Google Cloud with billing configured and a blank project.
These are all simple to setup, so we won’t spend time explaining them here – for the remainder of this section
we’ll be assuming you have these.

The following steps will walk you through configuring GKE via a web browser. Some of the details might change
in the future, but the overall flow will be the same.

1. From within the Console of your Google Cloud Platform (GCP) project, open the navigation pane on the
left-hand side and select Kubernetes Engine > Clusters. You may have to click the three horizontals bars
at the top left of the Console to make the navigation pane visible.

2. Click the Create cluster button.

This will start the wizard to create a new Kubernetes cluster.
3. The wizard currently offers a few templated options. This may change in the future, but the overall flow

will be the same. Choose a template (Your first cluster or Standard cluster will probably be good
options to choose from).

4. Give the cluster a meaningful name and description.
5. Choose whether you want a Regional or Zonal cluster. Regional is newer and potentially more resilient

– your masters and nodes will be distributed across multiple zones but still accessible via a single highly-
available endpoint.

6. Choose the Region or Zone for your cluster.
7. Select the Master version. This is the version of Kubernetes that will run on your master and nodes. You

are limited to the versions available in the drop-down list. Choose an up-to-date version.

An alternative to setting the Master version is to choose a release channel that gives you limited control
over quickly your cluster will be upgraded to new releases.

8. You can select the number and size of your worker nodes under the Node pools section. This allows you
to choose the size and configuration of your worker nodes, as well as how many. Larger and faster nodes
incur higher costs.

If you are building a Regional cluster, the number you specify will be the number of nodes in each zone,
not the total number.

9. Feel free to enable the Istio service mesh.
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10. Leave all other options with default values and click Create.

You can also click the More link to see a long list of other options you can customize. It’s worth looking at them,
but we won’t be discussing them in this book.

Your cluster will now be created.

Exploring GKE

Now that you have a cluster, it’s time to have a quick look at it.

Make sure you’re logged on to the GCP Console and are viewing Clusters under Kubernetes Engine.

The clusters page shows a high-level overview of the Kubernetes clusters you have in your project. Figure 3.1
shows a single 3-node cluster called gke.

Figure 3.1

Click the cluster name to drill into more detail. Figure 3.2 shows a screenshot of some of the detail you can view.

Figure 3.2

Clicking the > CONNECT icon towards the top of the web UI (not shown in Figure 3.2) gives you a command
you can run on your laptop to configure your local gcloud and kubectl tools to talk to your cluster. Copy this
command to your clipboard.

For the following step towork, youwill need to download and install the Google Cloud SDK from https://cloud.google.com/sdk/.
This will download several utilities, including the gcloud and kubectl command-line utilities.

Open a terminal and paste the long gcloud command into it. This will configure your kubectl client to talk to
your new GKE cluster.

Run a kubectl get nodes command to list the nodes in the cluster.
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$ kubectl get nodes
NAME STATUS AGE VERSION
gke-cluster... Ready 5m v1.14.7-gke.14
gke-cluster... Ready 6m v1.14.7-gke.14
gke-cluster... Ready 6m v1.14.7-gke.14

Congratulations! You know how to create a production-grade Kubernetes cluster usingGoogle Kubernetes Engine
(GKE). You also know how to inspect it and connect to it.

Warning! Be sure to delete your GKE cluster as soon as you are finished using it. GKE, and other
hosted K8s platforms may incur costs even when they are not in use.

Other methods

As previously stated, there are lots of ways to install Kubernetes. These include:

• kops
• kubeadm

kops is an opinionated tool for installing Kubernetes on AWS. The term opinionated means that it wants to
configure Kubernetes in a particular way and doesn’t let you customise very much. If you need more freedom
with your installation you might want to consider kubeadm.

Previous versions of the book dedicated multiple tens of pages to each method. However, the material was
extremely dry and difficult to follow. In this version I recommend readers follow online guides to build
Kubernetes with either kops or kubeadm.

kubectl

kubectl is the main Kubernetes command-line tool and is what you will use for your day-to-day Kubernetes
management activities. It might be useful to think of kubectl as SSH for Kubernetes. It’s available for Linux,
Mac and Windows.

As it’s the main command-line tool, it’s important that you use a version that is no more than one minor version
higher or lower than your cluster. For example, if your cluster is running Kubernetes 1.16.x, your kubectl should
be between 1.15.x and 1.17.x.

At a high-level, kubectl converts user-friendly commands into the JSON payload required by the API server. It
uses a configuration file to know which cluster and API server endpoint to POST commands to.

The kubectl configuration file is called config and lives in $HOME/.kube. It contains definitions for:

• Clusters
• Users (credentials)
• Contexts
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Clusters is a list of clusters that kubectl knows about and is ideal if you plan on using a single workstation to
manage multiple clusters. Each cluster definition has a name, certificate info, and API server endpoint.

Users let you define different users that might have different levels of permissions on each cluster. For example,
you might have a dev user and an ops user, each with different permissions. Each user definition has a friendly
name, a username, and a set of credentials.

Contexts bring together clusters and users under a friendly name. For example, you might have a context called
deploy-prod that combines the deploy user credentials with the prod cluster definition. If you use kubectl with
this context you will be POSTing commands to the API server of the prod cluster as the deploy user.

The following is a simple kubectl config file with a single cluster called minikube, a single user called minikube,
and a single context called minikube. The minikube context combines the minikube user and cluster, and is also
set as the default context.

apiVersion: v1
clusters:
- cluster:

certificate-authority: C:\Users\nigel\.minikube\ca.crt
server: https://192.168.1.77:8443

name: minikube
contexts:
- context:

cluster: minikube
user: minikube

name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: C:\Users\nigel\.minikube\client.crt
client-key: C:\Users\nigel\.minikube\client.key

You can view your kubectl config using the kubectl config view command. Sensitive data will be redacted
from the output.

You can use kubectl config current-context to see your current context. The following example shows a
system where kubectl is configured to issue commands to a cluster that is called eks-k8sbook.

$ kubectl config current-context
eks_k8sbook

You can change the current/active context with kubectl config use-context. The following command will
set the current context to docker-desktop so that future commands will be sent to the cluster defined in the
docker-desktop context. It obviously requires that a context called docker-desktop exists in the kubectl config
file.
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$ kubectl config use-context docker-desktop
Switched to context "docker-desktop".

$ kubectl config current-context
docker-desktop

Chapter summary

In this chapter, you saw a few ways to get a Kubernetes cluster.

You saw how fast and simple it is to setup a Kubernetes cluster on Play with Kubernetes (PWK) where you get
a 4-hour playground without having to install anything on your laptop or in your cloud.

You saw how to setup Docker Desktop for a great single-node developer experience on our laptops.

You learned how to spin up a managed/hosted Kubernetes cluster in the Google Cloud using Google Kubernetes
Engine (GKE).

The chapter finished up with an overview of kubectl, then Kubernetes command-line tool.



4: Working with Pods
We’ll split this chapter in to two main parts:

• Theory
• Hands-on

Let’s crack on with the theory.

Pod theory

The atomic unit of scheduling in the virtualization world is the Virtual Machine (VM). This means deploying
applications in the virtualization world is done by scheduling them on VMs.

In the Docker world, the atomic unit is the container. This means deploying applications on Docker is done by
scheduling them inside of containers.

In the Kubernetes world, the atomic unit is the Pod. Ergo, deploying applications on Kubernetes means stamping
them out in Pods.

This is fundamental to understanding Kubernetes, so be sure to tag it in your brain as important >> Virtualization
does VMs, Docker does containers, and Kubernetes does Pods.

Figure 4.1

As Pods are the fundamental unit of deployment in Kubernetes, it’s vital you understand how they work.

Note:We’re going to talk a lot about Pods in this chapter. However, don’t lose sight of the fact that
Pods are just a vehicle for deploying applications.

Pods vs containers

In a previous chapter we said that a Pod hosts one or more containers. From a footprint perspective, this puts
Pods somewhere in between containers and VMs – they’re a tiny bit bigger than a container, but a lot smaller
than a VM.
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Digging a bit deeper, a Pod is a shared execution environment for one or more containers.

The simplest model is the one-container-per-Podmodel. However, multi-container Pods are gaining in popularity
and are important for advanced configurations.

An application-centric use-case for multi-container Pods is co-scheduling tightly-coupled workloads. For
example, two containers that share memory won’t work if they are scheduled on different nodes in the cluster.
By putting both containers inside the same Pod, you ensure that they are scheduled to the same node and share
the same execution environment.

An infrastructure-centric use-case for multi-container Pods is a service mesh. In the service mesh model, a proxy
container is inserted into every application Pod. This proxy container handles all network traffic entering and
leaving the Pod, meaning it is ideally placed to implement features such as traffic encryption, network telemetry,
intelligent routing, and more.

Multi-container Pods: the typical example

A common example for comparing single-container and multi-container Pods is a web server that utilizes a file
synchronizer.

In this example there are two clear concerns:

1. Serving the web page
2. Making sure the content is up to date

The question is whether to address the two concerns in a single container or two separate containers.

In this context, a concern is a requirement or a task. Generally speaking, microservices design patterns dictate
that we separate concerns. This means we only every deal with one concern per container.

Assuming the previous example, this will require two containers: one for the web service, another for the file-sync
service.

This model of separating concerns has a lot of advantages, including:

• Different teams can be responsible for each of the two containers
• Each container can be scaled independently
• Each container can be developed and iterated independently
• Each container can have its own release cadence
• If one fails, the other keeps running

Despite the benefits of separating concerns, it’s often a requirement to co-schedule those separate containers in
a single Pod. This makes sure both containers are scheduled to the same node and share the same execution
environment (the Pod’s environment).

Common use-cases formulti-container Pods include; two containers that need to sharememory or share a volume
(see Figure 4.2).
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Figure 4.2

The simplest way to share a volume with two containers is to configure the two containers as part of the same
Pod. This will ensure they run on the same node and can access the same shared execution environment (this
includes any volumes).

In summary, the general rule is to separate concerns by designing containers do a single job. The simplest model
schedules a single container per Pod, but more advanced use-cases place multiple container per Pod.

How do we deploy Pods

Remember that Pods are just a vehicle for executing an application. Therefore, any time we talk about running
or deploying Pods, we’re talking about running and deploying applications.

To deploy a Pod to a Kubernetes cluster you define it in a manifest file and POST that manifest file to the API
Server. The control plane verifies the configuration of the YAML file, writes it to the cluster store as a record of
intent, and the scheduler deploys it to a healthy node with enough available resources. This process is identical
for single-container Pods and multi-container Pods.

Figure 4.3

Let’s dig a bit deeper…

The anatomy of a Pod

At the highest level, a Pod is a shared execution environment for one or more containers. Shared execution
environment means that the Pod has a set of resources that are shared by every container that is part of the Pod.
These resources include; IP addresses, ports, hostname, sockets, memory, volumes, and more…
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If you’re using Docker as the container runtime, a Pod is actually a special type of container called a pause
container. That’s right, a Pod is just a fancy name for a special container. This means containers running inside of
Pods are really containers running inside of containers. For more information, watch “Inception” by Christopher
Nolan, starring Leonardo DiCaprio ;-)

Seriously though, the Pod (pause container) is just a collection of system resources that containers running inside
of it will inherit and share. These system resources are kernel namespaces and include:

• Network namespace: IP address, port range, routing table…
• UTS namespace: Hostname
• IPC namespace: Unix domain sockets…

As we just mentioned, this means that all containers in a Pod share a hostname, IP address, memory address
space, and volumes.

Let’s look at how this affects networking.

Pods and shared networking

Each Pod creates its own network namespace. This includes; a single IP address, a single range of TCP and UDP
ports, and a single routing table. If a Pod has s single container, that container has full access to the IP, port range
and routing table. If it’s a multi-container Pod, all containers in the Pod will share the IP, port range and routing
table.

Figure 4.4 shows two Pods, each with its own IP. Even though one of them is a multi-container Pod, it still only
gets a single IP.

Figure 4.4

In Figure 4.4, external access to the containers in Pod 1 is achieved via the IP address of the Pod coupled with
the port of the container you wish to reach. For example, 10.0.10.15:80 will get you to the main container.
Container-to-container communication works via the Pod’s localhost adapter and port number. For example, the
main container can reach the supporting container via localhost:5000.

One last time (apologies if it feels like I’m over-repeating myself)… Each container in a Pod shares the Pod’s
entire network namespace – IP, localhost adapter, port range, routing table, and more.
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However, as we’ve already said, it’s more than just networking. All containers in a Pod have access to the
same volumes, the same memory, the same IPC sockets, and more. Technically speaking, the Pod holds all the
namespaces, any containers that are part of the Pod inherit them and share them.

This networking model makes inter-Pod communication really simple. Every Pod in the cluster has its own IP
addresses that’s fully routable on the Pod network. If you read the chapter on installing Kubernetes, you’ll have
seen how we created a Pod network at the end of the Play with Kubernetes, and kubeadm sections. Because every
Pod gets its own routable IP, every Pod on the Pod network can talk directly to every other Pod without the need
for nasty port mappings.

Figure 4.5 Inter-Pod communication

As previously mentioned, intra-Pod communication – where two containers in the same Pod need to communi-
cate – can happen via the Pod’s localhost interface.

Figure 4.6 Intra-Pod communication

If you need to make multiple containers in the same Pod available to the outside world, you can expose them
on individual ports. Each container needs its own port, and two containers in the same Pod cannot use the same
port.

In summary. It’s all about the Pod! The Pod gets deployed, the Pod gets the IP, the Pod owns all of the
namespaces… The Pod is at the center of the Kuberverse.

Pods and cgroups

At a high level, Control Groups (cgroups) are a Linux kernel technology that prevents individual containers from
consuming all of the available CPU, RAM and IOPS on a node. You could say that cgroups actively police resource
usage.

Individual containers have their own cgroup limits.

This means it’s possible for two containers in the same Pod to have their own set of cgroup limits. This is a
powerful and flexible model. If we assume the typical multi-container Pod example from earlier in the chapter,
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you could set a cgroup limit on the file sync container so that it has access to less resources than the web service
container. This might reduce the risk of it starving the web service container of CPU and memory.

Atomic deployment of Pods

Deploying a Pod is an atomic operation. This means it’s an all-or-nothing operation – there’s no such thing as a
partially deployed Pod that can service requests. It also means that all containers in a Pod will be scheduled on
the same node.

Once all Pod resources are ready, the Pod can start servicing requests.

Pod lifecycle

The lifecycle of a typical Pod goes something like this. You define it in a YAMLmanifest file and POST the manifest
to the API server. Once there, the contents of the manifest are persisted to the cluster store as a record of intent
(desired state), and the Pod is scheduled to a healthy node with enough resources. Once it’s scheduled to a node,
it enters the pending state while the container runtime on the node downloads images and starts any containers.
The Pod remains in the pending state until all of its resources are up and ready. Once everything’s up and ready,
the Pod enters the running state. Once it has completed all of its tasks, it gets terminated and enters the succeeded
state.

When a Pod can’t start, it can remain in the pending state or go to the failed state. This is all shown in Figure
4.7.

Figure 4.7 Pod lifecycle

Pods that are deployed via Pod manifest files are singletons – they are not managed by a controller that might
add features such as auto-scaling and self-healing capabilities. For this reason, we almost always deploy Pods
via higher-level controllers such as Deployments and DaemonSets, as these can reschedule Pods when they fail.

On that topic, it’s important to think of Pods as mortal. When they die, they’re gone. There’s no bringing them
back from the dead. This follows the pets vs cattle analogy, and Pods should be treated as cattle. When they die,
you replace them with another. There’s no tears and no funeral. The old one is gone, and a shiny new one – with
the same config, but a different ID and IP – magically appears and takes its place.

This is one of the main reasons you should design your applications so that they don’t store state in Pods. It’s
also why we shouldn’t rely on individual Pod IPs. Singleton Pods are not reliable!
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Pod theory summary

1. Pods are the atomic unit of scheduling in Kubernetes
2. You can havemore than one container in a Pod. Single-container Pods are the simplest, butmulti-container

Pods are ideal for containers that need to be tightly coupled. They’re also great for logging and service
meshes

3. Pods get scheduled on nodes – you can’t schedule a single Pod instance to span multiple nodes
4. Pods are defined declaratively in a manifest file that is POSTed to the API Server and assigned to nodes

by the scheduler
5. You almost always deploy Pods via higher-level controllers

Hands-on with Pods

It’s time to see Pods in action.

For the examples in the rest of this chapter we’ll use the 3-node cluster shown in Figure 4.8.

Figure 4.8

It doesn’t matter where this cluster is or how it was deployed. All that matters is that you have three Linux hosts
configured into a Kubernetes cluster with at least one master and two nodes. You’ll also need kubectl installed
and configured to talk to the cluster.

Three super-quick ways to get a Kubernetes cluster include:

• Sign-up to msb.com and get access to your own private online cluster (plus a lot of learning content)
• Download and install Docker Desktop to your computer
• Search “play with kubernetes” and get a temporary online playground

Following the Kubernetes mantra of composable infrastructure, you define Pods in manifest files, POST these to
the API server, and let the scheduler instantiate them on the cluster.

Pod manifest files

For the examples in this chapter we’re going to use the following Pod manifest. It’s available in the book’s GitHub
repo under the pods folder called pod.yml:
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apiVersion: v1
kind: Pod
metadata:
name: hello-pod
labels:
zone: prod
version: v1

spec:
containers:
- name: hello-ctr
image: nigelpoulton/k8sbook:latest
ports:
- containerPort: 8080

Let’s step through what the YAML file is describing.

Straight away we can see four top-level resources:

• apiVersion
• kind
• metadata
• spec

The .apiVersion field tells you two things – theAPI group and theAPI version. The usual format for apiVersion
<api-group>/<version>. However, Pods are defined in a special API group called the core group which omits
the api-group part. For example, StorageClass objects are defined in v1 of the storage.k8s.io API group and
are described in YAML files as storage.k8s.io/v1. However, Pods are in the core API group which is special,
as it omits the API group name, so we describe them in YAML files as just v1.

It’s possible for a resource to be defined in multiple versions of an API group. For example, some-api-group/v1
and some-api-group/v2. In this case, the definition in the newer group will probably include additional features
and fields that extend the capabilities of the resource. Think of the apiVersion field as defining the schema –
newer is usually better. Interestingly, there may be occasions where you deploy an object via one version in the
YAML file, but when you introspect it, the return values show it as another version. For example, you may deploy
an object by specifying v1 in the YAML file, but when you run commands against it the returns might show it
as v1beta1. This is normal behaviour.

Anyway, Pods are defined at the v1 path.

The .kind field tells Kubernetes the type of object is being deployed.

So far, you know you’re deploying a Pod object as defined in v1 of the core API group.

The .metadata section is where you attach a name and labels. These help you identify the object in the cluster, as
well as create loose couplings between different objects. You can also define the Namespace that an object should
be deployed to. Keeping things brief, Namespaces are a way to logically divide a cluster into multiple virtual
clusters for management purposes. In the real world, it’s highly recommended to use namespaces, however, you
should not think of them as strong security boundaries.

The .metadata section of this Pod manifest is naming the Pod “hello-pod” and assigning it two labels. Labels
are simple key-value pairs, but they’re insanely powerful. We’ll talk more about labels later as you build your
knowledge.
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As the .metadata section does not specify a Namespace, the Pod will be deployed to the default Namespace.
It’s not good practice to use the default namespace in the real world, but it’s fine for these examples.

The .spec section is where you define the containers that will run in the Pod. This example is deploying a Pod
with a single container based on the nigelpoulton/k8sbook:latest image. It’s calling the container hello-ctr
and exposing it on port 8080.

If this was a multi-container Pod, you’d define additional containers in the .spec section.

Manifest files: Empathy as Code

Quick side-step.

Configuration files, like Kubernetes manifest files, are excellent sources of documentation. As such, they have
some secondary benefits. Two of these include:

• Speeding-up the on-boarding process for new team members
• Bridging the gap between developers and operations

For example, if you need a new team member to understand the basic functions and requirements of an
application, get them to read the application’s Kubernetes manifest files.

Also, if your operations teams complain that developers don’t give accurate application requirements and
documentation, make your developers use Kubernetes. Kubernetes forces developers to describe their applications
through Kubernetes manifests, which can then be used by operations staff to understand how the application
works and what it requires from the environment.

These kinds of benefits were described as a form of empathy as code by Nirmal Mehta in his 2017 DockerCon
talk entitled “A Strong Belief, Loosely Held: Bringing Empathy to IT”.

I understand that describing YAML files as “empathy as code” sounds a bit extreme. However, there is merit to
the concept – they definitely help.

Back on track…

Deploying Pods from a manifest file

If you’re following along with the examples, save the manifest file as pod.yml in your current directory and then
use the following kubectl command to POST the manifest to the API server.

$ kubectl apply -f pod.yml
pod/hello-pod created

Although the Pod is showing as created, it might not be fully deployed and available yet. This is because it takes
time to pull the image.

Run a kubectl get pods command to check the status.
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$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-pod 0/1 ContainerCreating 0 9s

You can see that the container is still being created – probably waiting for the image to be pulled from Docker
Hub.

You can add the --watch flag to the kubectl get pods command so that you can monitor it and see when the
status changes to Running.

Congratulations! Your Pod has been scheduled to a healthy node in the cluster and is being monitored by the
local kubelet process. The kubelet process is the Kubernetes agent running on the node.

In future chapters, you’ll see how to connect to the web server running in the Pod.

Introspecting running Pods

As good as the kubectl get pods command is, it’s a bit light on detail. Not to worry though, there’s plenty of
options for deeper introspection.

First up, the kubectl get command offers a couple of really simple flags that give you more information:

The -o wide flag gives a couple more columns but is still a single line of output.

The -o yaml flag takes things to the next level. This returns a full copy of the Pod manifest from the cluster store.
The output is broadly divided into two parts:

• desired state (.spec)
• current observed state (.status)

The following command shows a snipped version of a kubectl get pods -o yaml command.

$ kubectl get pods hello-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |

...
name: hello-pod
namespace: default

spec: #Desired state
containers:
- image: nigelpoulton/k8sbook:latest
imagePullPolicy: Always
name: hello-ctr
ports:

status: #Observed state
conditions:
- lastProbeTime: null
lastTransitionTime: 2019-11-19T15:24:24Z
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state:
running:
startedAt: 2019-11-19T15:26:04Z

...

Notice how the output contains more values than you initially set in the 13-line YAML file. Where does this extra
information come from?

Two main sources:

• The Kubernetes Pod object has far more settings than we defined in the manifest. Those that are not set
explicitly are automatically expanded with default values by Kubernetes.

• When you run a kubectl get pods with -o yaml you get the Pods current observed state as well as its
desired state. This observed state is listed in the .status section.

kubectl describe

Another great Kubernetes introspection command is kubectl describe. This provides a nicely formatted multi-
line overview of an object. It even includes some important object lifecycle events. The following command
describes the state of the hello-pod Pod.

$ kubectl describe pods hello-pod
Name: hello-pod
Namespace: default
Node: k8s-slave-lgpkjg/10.48.0.35
Start Time: Tue, 19 Nov 2019 16:24:24 +0100
Labels: version=v1

zone=prod
Status: Running
IP: 10.1.0.21
Containers:
hello-ctr:
Image: nigelpoulton/k8sbook:latest
Port: 8080/TCP
Host Port: 0/TCP
State: Running

Conditions:
Type Status
Initialized True
Ready True
PodScheduled True

...
Events:
Type Reason Age Message
---- ------ ---- -------
Normal Scheduled 2m Successfully assigned...
Normal Pulling 2m pulling image "nigelpoulton/k8sbook:latest"
Normal Pulled 2m Successfully pulled image
Normal Created 2m Created container
Normal Started 2m Started container

The output has been snipped to help it fit the book.
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kubectl exec: running commands in Pods

Another way to introspect a running Pod is to log into it or execute commands in it. You can do both of these
with the kubectl exec command. The following example shows how to execute a ps aux command in the first
container in the hello-pod Pod.

$ kubectl exec hello-pod ps aux
PID USER TIME COMMAND
1 root 0:00 node ./app.js

11 root 0:00 ps aux

You can also log-in to containers running in Pods using kubectl exec. When you do this, your terminal prompt
will change to indicate your session is now running inside of a container in the Pod, and you’ll be able to execute
commands from there (as long as the command binaries are installed in the container).

The following kubectl exec command will log-in to the first container in the hello-container Pod. Once inside
the container, install the curl utility and run a curl command to transfer data from the process listening on port
8080.

$ kubectl exec -it hello-pod sh

# apk add curl
<Snip>

# curl localhost:8080
<html><head><title>Pluralsight Rocks</title><link rel="stylesheet" href="http://netdna.bootstrapcdn.co\
m/bootstrap/3.1.1/css/bootstrap.min.css"/></head><body><div class="container"><div class="jumbotron"><\
h1>Yo Pluralsighters!!!</h1><p>Click the button below to head over to my podcast...</p><p> <a href="ht\
tp://intechwetrustpodcast.com" class="btn btn-primary">Podcast</a></p><p></p></div></div></body></html\
>

The -it flags make the exec session interactive and connects STDIN and STDOUT on your terminal to STDIN
and STDOUT inside the first container in the Pod. When the command completes, your shell prompt will change
to indicate your shell is now connected to the container.

If you are running multi-container Pods, you will need to pass the kubectl exec command the --container
flag and give it the name of the container that you want to create the exec session with. If you do not specify
this flag, the command will execute against the first container in the Pod. You can see the ordering and names
of containers in a Pod with the kubectl describe pods <pod> command.

kubectl logs

One other useful command for introspecting Pods is the kubectl logs command. Like other Pod-related
commands, if you don’t use --container to specify a container by name, it will execute against the first container
in the Pod. The format of the command is kubectl logs <pod>.

There’s obviously a lot more to Pods than what we’ve covered. However, you’ve learned enough to get started.

Clean-up up the lab by typing exit to quit your exec session inside the container, then run kubectl delete to
delete the Pod.
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# exit
$ kubectl delete -f pod.yml
pod "hello-pod" deleted

Chapter Summary

In this chapter, you learned that the atomic unit of deployment in the Kubernetes world is the Pod. Each Pod
consists of one or more containers and gets deployed to a single node in the cluster. The deployment operation
is an all-or-nothing atomic operation.

Pods are defined and deployed declaratively using a YAML manifest file, and it’s normal to deploy them via
higher-level controllers such as Deployments. You use the kubectl command to POST the manifest to the API
Server, it gets stored in the cluster store and converted into a PodSpec that is scheduled to a healthy cluster node
with enough available resources.

The process on the worker node that accepts the PodSpec is the kubelet. This is the main Kubernetes agent
running on every node in the cluster. It takes the PodSpec and is responsible for pulling all images and starting
all containers in the Pod.

If you deploy a singleton Pod (a Pod that is not deployed via a controller) to your cluster and the node it is running
on fails, the singleton Pod is not rescheduled on another node. Because of this, you almost always deploy Pods
via higher-level controllers such as Deployments and DaemonSets. These add capabilities such as self-healing
and rollbacks which are at the heart of what makes Kubernetes so powerful.



5: Kubernetes Deployments
In this chapter, you’ll see howDeployments bring self-healing, scalability, rolling updates, and versioned rollbacks
to Kubernetes.

We’ll divide the chapter as follows:

• Deployment theory
• How to create a Deployment
• How to perform a rolling update
• How to perform a rollback

Deployment theory

At a high level, you start with application code. That gets packaged as a container and wrapped in a Pod so it
can run on Kubernetes. However, Pods don’t self-heal, they don’t scale, and they don’t allow for easy updates or
rollbacks. Deployments do all of these. As a result, you’ll almost always deploy Pods via a Deployment controller.

Figure 5.1 shows some Pods being managed by a Deployment controller.

Figure 5.1

It’s important to know that a single Deployment object can only manage a single Pod template. For example,
if you have an application with a Pod template for the web front-end and another Pod template for the catalog
service, you’ll need two Deployments. However, as you saw in Figure 5.1, a Deployment can manage multiple
replicas of the same Pod. For example, Figure 5.1 could be a Deployment that currently manages two replicated
web server Pods.

The next thing to know is that Deployments are fully-fledged objects in the Kubernetes API. This means you
define them in manifest files that you POST to the API Server.

The last thing to note, is that behind-the-scenes, Deployments leverage another object called a ReplicaSet. While
it’s best practice that you don’t interact directly with ReplicaSets, it’s important to understand the role they play.

Keeping it high-level, Deployments use ReplicaSets to provide self-healing and scaling.
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Figure 5.2. shows the same Pods managed by the same Deployment. However, this time we’ve added a ReplicaSet
object into the relationship and shown which object is responsible for which feature.

Figure 5.2

In summary, think of Deployments as managing ReplicaSets, and ReplicaSets as managing Pods. Put them all
together, and you’ve got a great way to deploy and manage applications on Kubernetes.

Self-healing and scalability

Pods are great. They augment containers by allowing co-location of containers, sharing of volumes, sharing of
memory, simplified networking, and a lot more. But they offer nothing in the way of self-healing and scalability
– if the node a Pod is running on fails, the Pod will not be restarted.

Enter Deployments…

Deployments augment Pods by adding things like self-healing and scalability. This means:

• If a Pod managed by a Deployment fails, it will be replaced – self-healing.
• If a Pod managed by a Deployment sees increased load, you can easily add more of the same Pod to deal
with the load – scaling.

Remember though, behind-the-scenes, Deployments use an object called a ReplicaSet to accomplish self-healing
and scalability. However, ReplicaSets operate in the background and you should always carry out operations
against the Deployment. For this reason, we’ll focus on Deployments.

It’s all about the state

Before going any further, it’s critical to understand three concepts that are fundamental to everything about
Kubernetes:

• Desired state
• Current state (sometimes called actual state or observed state)
• Declarative model

Desired state is what you want. Current state is what you have. If the two match, everybody’s happy.

The declarative model is a way of telling Kubernetes what your desired state is, without having to get into the
detail of how to implement it. You leave the how up to Kubernetes.
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The declarative model

There are two competing models. The declarative model and the imperative model.

The declarative model is all about describing the end-goal – telling Kubernetes what you want. The imperative
model is all about long lists of commands to reach the end-goal – telling Kubernetes how to do something.

The following is an extremely simple analogy that might help:

• Declarative: I need a chocolate cake that will feed 10 people.
• Imperative: Drive to the store. Buy; eggs, milk, flour, cocoa powder… Drive home. Turn on oven. Mix
ingredients. Place in baking tray. Place tray in oven for 30 minutes. Remove from oven and turn oven off.
Add icing. Leave to stand.

The declarative model is stating what you want (chocolate cake for 10). The imperative model is a long list of
steps required to make a chocolate cake for 10.

Let’s look at a more concrete example.

Assume you’ve got an application with two services – front-end and back-end. You’ve built container images so
that you can have a Pod for the front-end service, and a separate Pod for the back-end service. To meet expected
demand, you always need 5 instances of the front-end Pod, and 2 instances of the back-end Pod.

Taking the declarative approach, you write a configuration file that tells Kubernetes what you want your
application to look like. For example, I want 5 replicas of the front-end Pod all listening externally on port 80
please. And I also want 2 back-end Pods listening internally on port 27017. That’s the desired state. Obviously,
the YAML format of the config file will be different, but you get the picture.

Once you’ve described the desired state, you give the config file to Kubernetes and sit back while Kubernetes
does the hard work of implementing it.

But things don’t stop there… Kubernetes implements watch loops that are constantly checking that you’ve got
what you asked for – does current state match desired state.

Believe me when I tell you, it’s a beautiful thing.

The opposite of the declarative model is the imperative model. In the imperative model, there’s no concept of
what you actually want. At least there’s no record of what you want, all you get is a list of instructions.

To make things worse, imperative instructions might have multiple variations. For example, the commands to
start containerd containers are different from the commands to start gVisor containers. This ends up being
more work, prone to more errors, and because it’s not declaring a desired state, there’s no self-healing.

Believe me when I tell you, this isn’t so beautiful.

Kubernetes supports both models, but strongly prefers the declarative model.

Reconciliation loops

Fundamental to desired state is the concept of background reconciliation loops.

For example, ReplicaSets implement a background reconciliation loop that is constantly checking whether the
right number of Pod replicas are present on the cluster. If there aren’t enough, it adds more. If there are too many,
it terminates some.

To be crystal clear, Kubernetes is constantly making sure that current state matches desired state.
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If they don’t match – may be desired state is 10 replicas, but only 8 are running – Kubernetes declares a red-alert
condition, orders the control plane to battle-stations and brings up two more replicas. And the best part… it does
all of this without calling you at 04:20 am!

But it’s not just failure scenarios. These very-same reconciliation loops enable scaling.

For example, if you POST an updated config that changes replica count from 3 to 5, the new value of 5 will be
registered as the application’s new desired state. The next time the ReplicaSet reconciliation loop runs, it will
notice the discrepancy and follow the same process – sounding the claxon horn for red alert and spinning up
two more replicas.

It really is a beautiful thing.

Rolling updates with Deployments

As well as self-healing and scaling, Deployments give us zero-downtime rolling-updates.

As previously mentioned, Deployments use ReplicaSets for some of the background legwork. In fact, every time
you create a Deployment, you automatically get a ReplicaSet that manages the Deployment’s Pods.

Note: Best practice states that you should not manage ReplicaSets directly. You should perform all
actions against the Deployment object and leave the Deployment to manage ReplicaSets.

It works like this. You design applications with each discrete service as a Pod. For convenience – self-healing,
scaling, rolling updates and more – you wrap Pods in Deployments. This means creating a YAML configuration
file describing all of the following:

• How many Pod replicas
• What image to use for the Pod’s container(s)
• What network ports to use
• Details about how to perform rolling updates

You POST the YAML file to the API server and Kubernetes does the rest.

Once everything is up and running, Kubernetes sets up watch loops to make sure observed state matches desired
state.

All good so far.

Now, assume you’ve experienced a bug, and you need to deploy an updated image that implements a fix. To do
this, you update the same Deployment YAML filewith the new image version and re-POST it to the API server.
This registers a new desired state on the cluster, requesting the same number of Pods, but all running the new
version of the image. To make this happen, Kubernetes creates a new ReplicaSet for the Pods with the new image.
You now have two ReplicaSets – the original one for the Pods with the old version of the image, and a new one
for the Pods with the updated version. Each time Kubernetes increases the number of Pods in the new ReplicaSet
(with the new version of the image) it decreases the number of Pods in the old ReplicaSet (with the old version
of the image). Net result, you get a smooth rolling update with zero downtime. And you can rinse and repeat the
process for future updates – just keep updating that manifest file (which should be stored in a version control
system).

Brilliant.
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Figure 5.3 shows a Deployment that has been updated once. The initial deployment created the ReplicaSet on the
left, and the update created the ReplicaSet on the right. You can see that the ReplicaSet for the initial deployment
has been wound down and no longer has any Pod replicas. The ReplicaSet associated with the update is active
and owns all of the Pods.

Figure 5.3

It’s important to understand that the old ReplicaSet still has its entire configuration, including the older version
of the image it used. This will be important in the next section.

Rollbacks

As we’ve seen in Figure 5.3, older ReplicaSets are wound down and no longer manage any Pods. However, they
still exist with their full configuration. This makes them a great option for reverting to previous versions.

The process of rolling back is essentially the opposite of a rolling update – wind one of the old ReplicaSets up,
and wind the current one down. Simple.

Figure 5.4 shows the same app rolled back to the initial revision.

Figure 5.4

That’s not the end though. There’s built-in intelligence that lets us say things like “wait X number of seconds after
each Pod comes up before proceeding to the next Pod”. There’s also startup probes, readiness probes, and liveness
probes that can check the health and status of Pods. All-in-all, Deployments are excellent for performing rolling
updates and versioned rollbacks.

With all of that in mind, let’s get your hands dirty and create a Deployment.
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How to create a Deployment

In this section, you’ll create a brand-new Kubernetes Deployment from a YAML file. You can do the same thing
imperatively using the kubectl run command, but you shouldn’t. The right way is the declarative way.

The following YAML snippet is the Deployment manifest file that you’ll use. It’s available in the book’s GitHub
repo in the “deployments” folder and is called deploy.yml.

The examples assume you’ve got a copy in your system’s PATH, and is called deploy.yml.

apiVersion: apps/v1 #Older versions of k8s use apps/v1beta1
kind: Deployment
metadata:
name: hello-deploy

spec:
replicas: 10
selector:
matchLabels:

app: hello-world
minReadySeconds: 10
strategy:
type: RollingUpdate
rollingUpdate:

maxUnavailable: 1
maxSurge: 1

template:
metadata:

labels:
app: hello-world

spec:
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:latest
ports:
- containerPort: 8080

Warning: The images used in this book are not maintained and may contain vulnerabilities and
other security issues. Use with caution.

Let’s step through the config and explain some of the important parts.

Right at the very top you specify the API version to use. Assuming that you’re using an up-to-date version of
Kubernetes, Deployment objects are in the apps/v1 API group.

Next, the .kind field tells Kubernetes you’re defining a Deployment object.

The .metadata section is where we give the Deployment a name and labels.

The .spec section is where most of the action happens. Anything directly below .spec relates to the Pod.
Anything nested below .spec.template relates to the Pod template that the Deployment will manage. In this
example, the Pod template defines a single container.
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.spec.replicas tells Kubernetes how may Pod replicas to deploy. spec.selector is a list of labels that Pods
must have in order for the Deployment to manage them. And .spec.strategy tells Kubernetes how to perform
updates to the Pods managed by the Deployment.

Use kubectl apply to implement it on the cluster.

Note: kubectl apply POSTs the YAML file to the Kubernetes API server.

$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy created

The Deployment is now instantiated on the cluster.

Inspecting Deployments

You can use the normal kubectl get and kubectl describe commands to see details of the Deployment.

$ kubectl get deploy hello-deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-deploy 10 10 10 10 24s

$ kubectl describe deploy hello-deploy
Name: hello-deploy
Namespace: default
Selector: app=hello-world
Replicas: 10 desired | 10 updated | 10 total ...
StrategyType: RollingUpdate
MinReadySeconds: 10
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
Labels: app=hello-world
Containers:

hello-pod:
Image: nigelpoulton/k8sbook:latest
Port: 8080/TCP

<SNIP>

The command outputs have been trimmed for readability. Yours will show more information.

As we mentioned earlier, Deployments automatically create associated ReplicaSets. Use the following kubectl
command to confirm this.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
hello-deploy-7bbd... 10 10 10 1m

Right now you only have one ReplicaSet. This is because you’ve only performed the initial rollout of the
Deployment. You can also see that the name of the ReplicaSet matches the name of the Deployment with a
hash on the end. The hash is a hash of the Pod template section (anything below .spec.template) of the YAML
manifest file.

You can get more detailed information about the ReplicaSet with the usual kubectl describe command.
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Accessing the app

In order to access the application from a stable name or IP address, or even from outside the cluster, you need a
Kubernetes Service object. We’ll discuss Service objects in detail in the next chapter, but for now it’s enough to
know they provide a stable DNS name and IP address for a set of Pods.

The following YAML defines a Service that will work with the Pod replicas previously deployed. The YAML is
included in the “deployments” folder of the book’s GitHub repo called svc.yml.

apiVersion: v1
kind: Service
metadata:
name: hello-svc
labels:

app: hello-world
spec:
type: NodePort
ports:
- port: 8080
nodePort: 30001
protocol: TCP

selector:
app: hello-world

Deploy it with the following command (the command assumes the manifest file is called svc.yml and is in your
system’s PATH).

$ kubectl apply -f svc.yml
service/hello-svc created

Now that the Service is deployed, you can access the app from either of the following:

1. From inside the cluster using the DNS name hello-svc on port 8080
2. From outside the cluster by hitting any of the cluster nodes on port 30001

Figure 5.5 shows the Service being accessed from outside of the cluster via a node called node1 on port 30001. It
assumes that node1 is resolvable, and that port 30001 is allowed by any intervening firewalls.

If you are usingMinikube, you should append port 30001 to the end of the Minikube IP address. Use the minikube
ip command to get the IP address of your Minikube.
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Figure 5.5

Performing a rolling update

In this section, you’ll see how to perform a rolling update on the app you’ve just deployed. We’ll assume the new
version of the app has already been created and containerized as a Docker image with the edge tag. All that is
left to do is use Kubernetes to push the update to production. For this example, we’re ignoring real-world CI/CD
workflows and version control tools.

The first thing you need to do is update the image tag used in the Deployment’s manifest file. The initial version of
the app used an image tagged as nigelpoulton/k8sbook:latest. You’ll update the .spec.template.spec.containers
section of the Deployment manifest to reference the new nigelpoulton/k8sbook:edge image. This will ensure
that next time the manifest is POSTed to the API server, all Pods in the Deployment will be replaced with new
ones running the new edge image.

The following is the updated deploy.ymlmanifest file – the only change is to .spec.template.spec.containers.image
indicated by the commented line.

apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-deploy

spec:
replicas: 10
selector:
matchLabels:

app: hello-world
minReadySeconds: 10
strategy:
type: RollingUpdate
rollingUpdate:

maxUnavailable: 1
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maxSurge: 1
template:
metadata:

labels:
app: hello-world

spec:
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:edge # This line changed
ports:
- containerPort: 8080

Before POSTing the updated configuration to Kubernetes, let’s look at the settings that govern how the update
will proceed.

The .spec section of the manifest contains all of the settings relating to how updates will be performed. The first
value of interest is .spec.minReadySeconds. This is set to 10, telling Kubernetes to wait for 10 seconds between
each Pod being updated. This is useful for throttling the rate at which updates occur – longer waits give you a
chance to spot problems and avoid situations where you update all Pods to a faulty configuration.

There is also a nested .spec.strategy map that tells Kubernetes you want this Deployment to:

• Update using the RollingUpdate strategy
• Never have more than one Pod below desired state (maxUnavailable: 1)
• Never have more than one Pod above desired state (maxSurge: 1)

As the desired state of the app demands 10 replicas, maxSurge: 1 means you will never have more than 11 Pods
during the update process, and maxUnavailable: 1 means you’ll never have less than 9. The net result will be a
rolling update that updates two Pods at a time (the delta between 9 and 11 is 2).

With the updated manifest ready, you can initiate the update by re-POSTing the updated YAML file to the API
server.

$ kubectl apply -f deploy.yml --record
deployment.apps/hello-deploy configured

The update may take some time to complete. This is because it will iterate two Pods at a time, pulling down the
new image on each node, starting the new Pods, and then waiting 10 seconds before moving on to the next two.

You can monitor the progress of the update with kubectl rollout status.

$ kubectl rollout status deployment hello-deploy
Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 5 out of 10 new replicas...
^C

If you press Ctrl+C to stop watching the progress of the update, you can run kubectl get deploy commands
while the update is in process. This lets you see the effect of some of the update-related settings in the manifest.
For example, the following command shows that 5 of the replicas have been updated and you currently have 11.
11 is 1 more than the desired state of 10. This is a result of the maxSurge=1 value in the manifest.
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$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-deploy 10 11 5 9 28m

Once the update is complete, we can verify with kubectl get deploy.

$ kubectl get deploy hello-deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-deploy 10 10 10 10 39m

The output shows the update as complete – 10 Pods are up to date.

You can get more detailed information about the state of the Deployment with the kubectl describe deploy
command. This will include the new version of the image in the Pod Template section of the output.

If you’ve been following along with the examples, you’ll be able to hit refresh in your browser and see the
updated app (Figure 5.6).The old version of the app displayed “Kubernetes Rocks!”, the new version displays “The
Kubernetes Book!!!”.

Figure 5.6

How to perform a rollback

A moment ago, you used kubectl apply to perform a rolling update on a Deployment. You used the --record
flag so that Kubernetes wouldmaintain a documented revision history of the Deployment. The following kubectl
rollout history command shows the Deployment with two revisions.

$ kubectl rollout history deployment hello-deploy
deployment.apps/hello-deploy
REVISION CHANGE-CAUSE
1 <none>
2 kubectl apply --filename-deploy.yml --record=true

Revision 1 was the initial deployment that used the latest image tag. Revision 2 is the rolling update you just
performed. You can see that the command used to invoke the update has been recorded in the object’s history.
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This is only there because you used the --record flag as part of the command to invoke the update. This might
be a good reason for you to use the --record flag.

Earlier in the chapter we said that updating a Deployment creates a new ReplicaSet, and that any previous
ReplicaSets are not deleted. You can verify this with a kubectl get rs.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
hello-deploy-6bc8... 10 10 10 10m
hello-deploy-7bbd... 0 0 0 52m

The output shows that the ReplicaSet for the initial revision still exists (hello-deploy-7bbd...) but that it has
been wound down and is not managing any replicas. The hello-deploy-6bc8... ReplicaSet is the one from the
latest revision and is active with 10 replicas under management. However, the fact that the previous version still
exists makes rollbacks extremely simple.

If you’re following along, it’s worth running a kubectl describe rs against the old ReplicaSet to prove that its
configuration still exists.

The following example uses the kubectl rollout command to roll the application back to revision 1. This is an
imperative operation and not recommended. However, it can be convenient for quick rollbacks, just remember
to update your source YAML files to reflect the imperative changes you make to the cluster.

$ kubectl rollout undo deployment hello-deploy --to-revision=1
deployment.apps "hello-deploy" rolled back

Although it might look like the rollback operation is instantaneous, it’s not. Rollbacks follow the same rules set
out in the rolling update sections of the Deployment manifest – minReadySeconds: 10, maxUnavailable: 1, and
maxSurge: 1. You can verify this and track the progress with the following kubectl get deploy and kubectl
rollout commands.

$ kubectl get deploy hello-deploy
NAME DESIRED CURRNET UP-TO-DATE AVAILABE AGE
hello-deploy 10 11 4 9 45m

$ kubectl rollout status deployment hello-deploy
Waiting for rollout to finish: 6 out of 10 new replicas have been updated...
Waiting for rollout to finish: 7 out of 10 new replicas have been updated...
Waiting for rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for rollout to finish: 1 old replicas are pending termination...
Waiting for rollout to finish: 9 of 10 updated replicas are available...
^C

Congratulations. You’ve performed a rolling update and a successful rollback.

Use kubectl delete -f deploy.yml and kubectl delete -f svc.yml to delete the Deployment and Service
used in the examples.

Just a quick reminder. The rollback operation you just initiated was an imperative operation. This means that
the current state of the cluster will not match your source YAML files – the latest version of the YAML file lists
the edge image, but you’ve rolled the cluster back to the latest image. This is a problem with the imperative
approach. In the real world, following a rollback operation like this, you should manually update your source
YAML files to reflect the changes incurred by the rollback.
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Chapter summary

In this chapter, you learned that Deployments are a great way to manage Kubernetes apps. They build on
top of Pods by adding self-healing, scalability, rolling updates, and rollbacks. Behind-the-scenes, they leverage
ReplicaSets for the self-healing and scalability parts.

Like Pods, Deployments are objects in the Kubernetes API, and you should work with them declaratively.

When you perform updates with the kubectl apply command, older versions of ReplicaSets get wound down,
but they stick around making it easy to perform rollbacks.



6: Kubernetes Services
In the previous chapters, we’ve looked at some Kubernetes objects that are used to deploy and run applications.
We looked at Pods as the most fundamental unit for deploying microservices applications, then we looked at
Deployment controllers that add things like scaling, self-healing, and rolling updates. However, despite all of
benefits of Deployments, we still cannot rely on individual Pod IPs! This is where Kubernetes Service objects
come into play – they provide stable and reliable networking for a set of dynamic Pods.

We’ll divide the chapter as follows:

• Setting the scene
• Theory
• Hands-on
• Real world example

Setting the scene

Before diving in, we need to remind ourselves that Pod IPs are unreliable. When Pods fail, they get replaced with
new Pods that have new IPs. Scaling-up a Deployment introduces new Pods with new IP addresses. Scaling-down
a Deployment removes Pods. This creates a large amount of IP churn, and creates the situation where Pod IPs
cannot be relied on.

You also need to know 3 fundamental things about Kubernetes Services.

First, let’s clear up some terminology. When talking about Service with a capital “S”, we’re talking about the
Service object in Kubernetes that provides stable networking for Pods. Just like a Pod, ReplicaSet, or Deployment,
a Kubernetes Service is a REST object in the API that you define in a manifest and POST to the API Server.

Second, you need to know that every Service gets its own stable IP address, its own stable DNS name, and its
own stable port.

Third, you need to know that Services leverage labels to dynamically select the Pods in the cluster they will send
traffic to.

Theory

Figure 6.1 shows a simple Pod-based application deployed via a Kubernetes Deployment. It shows a client (which
could be another component of the app) that does not have a reliable network endpoint for accessing the Pods.
Remember, it’s a bad idea to talk directly to an individual Pod because that Pod could disappear at any point via
scaling operations, updates and rollbacks, and failures.
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Figure 6.1

Figure 6.2 shows the same application with a Service added into the mix. The Service is associated with the Pods
and fronts them with a stable IP, DNS, and port. It also load-balances requests across the Pods.

Figure 6.2

With a Service in front of a set of Pods, the Pods can scale up and down, they can fail, and they can be updated,
rolled back… and while events like these occur, the Service in front of them observes the changes and updates its
list of healthy Pods. But it never changes the stable IP, DNS, and port that it exposes.

Think of Services as having a static front-end and a dynamic back-end. The front-end, consisting of the IP, DNS
name, and port, and never changes. The back-end, consisting of the Pods, can be constantly changing.

Labels and loose coupling

Services are loosely coupled with Pods via labels and label selectors. This is the same technology that loosely
couples Deployments to Pods and is key to the flexibility provided by Kubernetes. Figure 6.3 shows an example
where 3 Pods are labelled as zone=prod and version=1, and the Service has a label selector that matches.
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Figure 6.3

In Figure 6.3, the Service is providing stable networking to all three Pods – you can send requests to the Service
and it will forward them on to the Pods. It also provides simple load-balancing.

For a Service to match a set of Pods, and therefore send traffic to them, the Pods must possess every label in
the Services label selector. However, the Pod can have additional labels that are not listed in the Service’s label
selector. If that’s confusing, the examples in Figures 6.4 and 6.5 should help.

Figure 6.4 shows an example where the Service does not match any of the Pods. This is because the Service is
looking for Pods that have two labels, but the Pods only possess one of them. The logic behind this is a Boolean
AND.

Figure 6.4

Figure 6.5 shows an example that does work. It works because the Service is looking for two labels and the
Pods in the diagram possess both. It doesn’t matter that the Pods possess additional labels that the Service isn’t
looking for. The Service is looking for Pods with two labels, it finds them, and ignores the fact that the Pods have
additional labels – all that is important is that the Pods possess the labels the Service is looking for.
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Figure 6.5

The following excerpts, from a Service YAML and Deployment YAML, show how selectors and labels are
implemented. I’ve added comments to the lines of interest.

svc.yml

apiVersion: v1
kind: Service
metadata:
name: hello-svc

spec:
ports:
- port: 8080
selector:
app: hello-world # Label selector
# Service is looking for Pods with the label `app=hello-world`

deploy.yml

apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-deploy

spec:
replicas: 10
selector:
matchLabels:

app: hello-world
template:
metadata:

labels:
app: hello-world # Pod labels
# The label matches the Service's label selector

spec:
containers:
- name: hello-ctr
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image: nigelpoulton/k8sbook:latest
ports:
- containerPort: 8080

In the example files, the Service has a label selector (.spec.selector) with a single value app=hello-world.
This is the label that the Service is looking for when it queries the cluster for matching Pods. The Deployment
specifies a Pod template with the same app=hello-world label (.spec.template.metadata.labels). This means
that any Pods it deploys will have the app=hello-world label. It is these two attributes that loosely couple the
Service to the Deployment’s Pods.

When the Deployment and the Service are deployed, the Service will select all 10 Pod replicas and provide them
with a stable networking endpoint and load-balance traffic to them.

Services and Endpoint objects

As Pods come-and-go (scaling up and down, failures, rolling updates etc.), the Service dynamically updates its
list of healthy matching Pods. It does this through a combination of the label selector and a construct called an
Endpoints object.

Each Service that is created, automatically gets an associated Endpoints object. All this Endpoints object is, is a
dynamic list of all of the healthy Pods on the cluster that match the Service’s label selector.

It works like this…

Kubernetes is constantly evaluating the Service’s label selector against the current list of healthy Pods on the
cluster. Any new Pods that match the selector get added to the Endpoints object, and any Pods that disappear get
removed. This means the Endpoints object is always up to date. Then, when a Service is sending traffic to Pods,
it queries its Endpoints object for the latest list of healthy matching Pods.

When sending traffic to Pods, via a Service, an application will normally query the cluster’s internal DNS for
the IP address of a Service. It then sends the traffic to this stable IP address and the Service sends it on to a
Pod. However, a Kubernetes-native application (that’s a fancy way of saying an application that understands
Kubernetes and can query the Kubernetes API) can query the Endpoints API directly, bypassing the DNS lookup
and use of the Service’s IP.

Now that you know the fundamentals of how Services work, let’s look at some use-cases.

Accessing Services from inside the cluster

Kubernetes supports several types of Service. The default type is ClusterIP.

A ClusterIP Service has a stable IP address and port that is only accessible from inside the cluster. It’s programmed
into the network fabric and guaranteed to be stable for the life of the Service. Programmed into the network fabric
is fancy way of saying the network just knows about it and you don’t need to bother with the details (stuff like
low-level IPTABLES and IPVS rules etc).

Anyway, the ClusterIP gets registered against the name of the Service on the cluster’s internal DNS service. All
Pods in the cluster are pre-programmed to know about the cluster’s DNS service, meaning all Pods are able to
resolve Service names.

Let’s look at a simple example.
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Creating a new Service called “magic-sandbox” will trigger the following. Kubernetes will register the name
“magic-sandbox”, along with the ClusterIP and port, with the cluster’s DNS service. The name, ClusterIP, and
port are guaranteed to be long-lived and stable, and all Pods in the cluster send service discovery requests to the
internal DNS and will therefore be able to resolve “magic-sandbox” to the ClusterIP. IPTABLES or IPVS rules are
distributed across the cluster that ensure traffic sent to the ClusterIP gets routed to Pods on the backend.

Net result… as long as a Pod (application microservice) knows the name of a Service, it can resolve that to its
ClusterIP address and connect to the desired Pods.

This only works for Pods and other objects on the cluster, as it requires access to the cluster’s DNS service. It
does not work outside of the cluster.

Accessing Services from outside the cluster

Kubernetes has another type of Service called a NodePort Service. This builds on top of ClusterIP and enables
access from outside of the cluster.

You already know that the default Service type is ClusterIP, and it registers a DNS name, virtual IP, and port
with the cluster’s DNS. A different type of Service, called a NodePort Service builds on this by adding another
port that can be used to reach the Service from outside the cluster. This additional port is called the NodePort.

The following example represents a NodePort Service:

• Name: magic-sandbox
• ClusterIP: 172.12.5.17
• port: 8080
• NodePort: 30050

This magic-sandbox Service can be accessed directly from inside the cluster via any of the first three values
(Name, ClusterIP, port). It can also be accessed from outside of the cluster by sending a request to the IP address
of any cluster node on port 30050.

At the bottom of the stack are cluster nodes that host Pods. You add a Service and use labels to associate it with
Pods. The Service object has a reliable NodePort mapped to every node in the cluster â€“- the NodePort value is
the same on every node. This means that traffic from outside of the cluster can hit any node in the cluster on the
NodePort and get through to the application (Pods).

Figure 6.6 shows a NodePort Service where 3 Pods are exposed externally on port 30050 on every node in the
cluster. In step 1, an external client hits Node2 on port 30050. In step 2 it is redirected to the Service object
(this happens even though Node2 isn’t running a Pod from the Service). Step 3 shows that the Service has an
associated Endpoint object with an always-up-to-date list of Pods matching the label selector. Step 4 shows the
client being directed to pod1 on Node1.
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Figure 6.6

The Service could just as easily have directed the client to pod2 or pod3. In fact, future requests may go to other
Pods as the Service performs basic load-balancing.

There are other types of Services, such as LoadBalancer, and ExternallName.

LoadBalancer Services integrate with load-balancers from your cloud provider such as AWS, Azure, DO, IBM
Cloud, and GCP. They build on top of NodePort Services (which in turn build on top of ClusterIP Services) and
allow clients on the internet to reach your Pods via one of your cloud’s load-balancers. They’re extremely easy
to setup. However, they only work if you’re running your Kubernetes cluster on a supported cloud platform. E.g.
you cannot leverage an ELB load-balancer on AWS if your Kubernetes cluster is running on Microsoft Azure.

ExternalName Services route traffic to systems outside of your Kubernetes cluster (all other Service types route
traffic to Pods in your cluster).

Service discovery

Kubernetes implements Service discovery in a couple of ways:

• DNS (preferred)
• Environment variables (definitely not preferred)

DNS-based Service discovery requires the DNS cluster-add-on – this is just a fancy name for the native
Kubernetes DNS service. I can’t remember ever seeing a cluster without it, and if you followed the installation
methods from the “Installing Kubernetes” chapter, you’ll already have this. Behind the scenes it implements:

• Control plane Pods running a DNS service
• A Service object called kube-dns that sits in front of the Pods
• Kubelets program every container with the knowledge of the DNS (via /etc/resolv.conf)
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The DNS add-on constantly watches the API server for new Services and automatically registers them in DNS.
This means every Service gets a DNS name that is resolvable across the entire cluster.

The alternative form of service discovery is through environment variables. Every Pod gets a set of environment
variables that resolve every Service currently on the cluster. However, this is an extremely limited fall-back in
case you’re not using DNS in your cluster.

A major problem with environment variables is that they’re only inserted into Pods when the Pod is initially
created. This means that Pods have no way of learning about new Services added to the cluster after the Pod
itself is created. This is far from ideal, and a major reason DNS is the preferred method. Another limitation can
be in clusters with a lot of Services.

Summary of Service theory

Services are all about providing stable networking for Pods. They also provide load-balancing and ways to be
accessed from outside of the cluster.

The front-end of a Service provides a stable IP, DNS name and port that is guaranteed not to change for the entire
life of the Service. The back-end of a Service uses labels to load-balance traffic across a potentially dynamic set
of application Pods.

Hands-on with Services

We’re about to get hands-on and put the theory to the test.

You’ll augment a simple single-Pod app with a Kubernetes Service. And You’ll learn how to do it in two ways:

• The imperative way (not recommended)
• The declarative way

The imperative way

Warning! The imperative way is not the Kubernetes way. It introduces the risk that youmake imperative changes
and never update your declarative manifests, rendering the manifests incorrect and out-of-date. This introduces
the risk that stale manifests are subsequently used to update the cluster at a later date, unintentionally overwriting
important changes that were made imperatively.

Use kubectl to declaratively deploy the following Deployment (later steps will be done imperatively).

The YAML file is called deploy.yml and can be found in the services folder in the book’s GitHub repo.
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apiVersion: apps/v1
kind: Deployment
metadata:
name: web-deploy

spec:
replicas: 10
selector:
matchLabels:

app: hello-world
template:
metadata:

labels:
app: hello-world

spec:
containers:
- name: hello-ctr
image: nigelpoulton/k8sbook:latest
ports:
- containerPort: 8080

$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy created

Now that the Deployment is running, it’s time to imperatively deploy a Service for it.

The command to imperatively create a Kubernetes Service is kubectl expose. Run the following command to
create a new Service that will provide networking and load-balancing for the Pods deployed in the previous step.

$ kubectl expose deployment web-deploy \
--name=hello-svc \
--target-port=8080 \
--type=NodePort

service/hello-svc exposed

Let’s explain what the command is doing. kubectl expose is the imperative way to create a new Service object.
deployment web-deploy is telling Kubernetes to expose the web-deploy Deployment that you created in the
previous step. --name=hello-svc tells Kubernetes to name this Service “hello-svc”, and --target-port=8080
tells it which port the app is listening on (this is not the cluster-wide NodePort that you’ll access the Service on).
Finally, --type=NodePort tells Kubernetes you want a cluster-wide port for the Service.

Once the Service is created, you can inspect it with the kubectl describe svc hello-svc command.
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$ kubectl describe svc hello-svc
Name: hello-svc
Namespace: default
Labels: <none>
Annotations: <none>
Selector: app=hello-world
Type: NodePort
IP: 192.168.201.116
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30175/TCP
Endpoints: 192.168.128.13:8080,192.168.128.249:8080, + more...
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

Some interesting values in the output include:

• Selector is the list of labels that Pods must have in order for the Service to send traffic to them
• IP is the permanent internal ClusterIP (VIP) of the Service
• Port is the port that the Service listens on inside the cluster
• TargetPort is the port that the application is listening on
• NodePort is the cluster-wide port that can be used to access it from outside the cluster
• Endpoints is the dynamic list of healthy Pod IPs currently match the Service’s label selector.

Now that you know the cluster-wide port that the Service is accessible on (30175), you can open a web browser
and access the app. In order to do this, you will need to know the IP address of at least one of the nodes in your
cluster, and you will need to be able to reach it from your browser – e.g. a publicly routable IP if you’re accessing
via the internet.

Figure 6.7 shows a web browser accessing a cluster node with an IP address of 54.246.255.52 on the cluster-wide
NodePort 30175.

Figure 6.7
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The app you’ve deployed is a simple web app. It’s built to listen on port 8080, and you’ve configured a Kubernetes
Service to map port 30175 on every cluster node back to port 8080 on the app. By default, cluster-wide ports
(NodePort values) are between 30,000 - 32,767. In this example it was dynamically assigned, but you can also
specify a port.

Coming up next you’re going to see how to do the same thing the proper way – the declarative way. To do that,
you need to clean up by deleting the Service you just created. You can do this with the following kubectl delete
svc command

$ kubectl delete svc hello-svc
service "hello-svc" deleted

The declarative way

Time to do things the proper way… the Kubernetes way.

A Service manifest file

You’ll use the following Service manifest file to deploy the same Service that you deployed in the previous section.
However, this time you’ll specify a value for the cluster-wide port.

apiVersion: v1
kind: Service
metadata:
name: hello-svc

spec:
type: NodePort
ports:
- port: 8080
nodePort: 30001
targetPort: 8080
protocol: TCP

selector:
app: hello-world

Let’s step through some of the lines.

Services are mature objects and are fully defined in the v1 core API group (.apiVersion).

The .kind field tells Kubernetes you’re defining a Service object.

The .metadata section defines a name for the Service. You can also apply labels here. Any labels you add here
are used to identify the Service and are not related to labels for selecting Pods.

The .spec section is where you actually define the Service. In this example, you’re telling Kubernetes to deploy
a NodePort Service. The port value configures the Service to listen on port 8080 for internal requests, and the
NodePort value tells it to listen on 30001 for external requests. The targetPort value is part of the Service’s
back-end configuration and tells Kubernetes to send traffic to the application Pods on port 8080. Then you’re
explicitly telling it to use TCP (default).

Finally, .spec.selector tells the Service to send traffic to all Pods in the cluster that have the app=hello-world
label. This means it will provide stable networking and load-balancing across all Pods with that label.

Before deploying and testing the Service, let’s remind ourselves of the major Service types.
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Common Service types

The three common ServiceTypes are:

• ClusterIP. This is the default option and gives the Service a stable IP address internally within the cluster.
It will not make the Service available outside of the cluster.

• NodePort. This builds on top of ClusterIP and adds a cluster-wide TCP or UDP port. It makes the Service
available outside of the cluster on a stable port.

• LoadBalancer. This builds on top of NodePort and integrates with cloud-based load-balancers.

There’s another Service type called ExternalName. This is used to direct traffic to services that exist outside of
the Kubernetes cluster.

The manifest needs POSTing to the API server. The simplest way to do this is with kubectl apply.

The YAML file is called svc.yml and can be found in the services folder of book’s GitHub repo.

$ kubectl apply -f svc.yml
service/hello-svc created

This command tells Kubernetes to deploy a new object from a file called svc.yml. The .kind field in the YAML
file tells Kubernetes that you’re deploying a new Service object.

Introspecting Services

Now that the Service is deployed, you can inspect it with the usual kubectl get and kubectl describe
commands.

$ kubectl get svc hello-svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-svc NodePort 100.70.40.2 <none> 8080:30001/TCP 8s

$ kubectl describe svc hello-svc
Name: hello-svc
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration...
Selector: app=hello-world
Type: NodePort
IP: 100.70.40.2
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30001/TCP
Endpoints: 100.96.1.10:8080, 100.96.1.11:8080, + more...
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>
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In the previous example, you exposed the Service as a NodePort on port 30001 across the entire cluster. This
means you can point a web browser to that port on any node and reach the Service and the Pods it’s proxying.
You will need to use the IP address of a node you can reach, and you will need to make sure that any firewall
and security rules allow the traffic to flow.

Figure 6.8 shows a web browser accessing the app via a cluster node with an IP address of 54.246.255.52 on the
cluster-wide port 30001.

Figure 6.8

Endpoints objects

Earlier in the chapter, we said that every Service gets its own Endpoints object with the same name as the Service.
This object holds a list of all the Pods the Service matches and is dynamically updated as matching Pods come
and go. You can see Endpoints with the normal kubectl commands.

In the following command, you use the Endpoint controller’s ep shortname.

$ kubectl get ep hello-svc
NAME ENDPOINTS AGE
hello-svc 100.96.1.10:8080, 100.96.1.11:8080 + 8 more... 1m

$ Kubectl describe ep hello-svc
Name: hello-svc
Namespace: default
Labels: <none>
Annotations: endpoints.kubernetes.io/last-change...
Subsets:
Addresses: 100.96.1.10,100.96.1.11,100.96.1.12...
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP

Events: <none>
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Summary of deploying Services

As with all Kubernetes objects, the preferred way of deploying and managing Services is the declarative way.
Labels allow them to send traffic to a dynamic set of Pods. This means you can deploy new Services that will
work with Pods and Deployments that are already running on the cluster and already in-use. Each Service gets
its own Endpoints object that maintains an up-to-date list of matching Pods.

Real world example

Although everything you’ve learned so far is cool and interesting, the important questions are:How does it bring
value? and How does it keep businesses running and make them more agile and resilient?

Let’s take a minute to run through a common real-world example – making updates to applications.

We all know that updating applications is a fact of life – bug fixes, new features, performance improvements etc.

Figure 6.9 shows a simple application deployed on a Kubernetes cluster as a bunch of Pods managed by a
Deployment. As part of it, there’s a Service selecting on Pods with labels that match app=biz1 and zone=prod
(notice how the Pods have both of the labels listed in the label selector). The application is up and running.

Figure 6.9

Now assume you need to push a new version, but you need to do it without causing downtime.

To do this, you can add Pods running the new version of the app as shown in Figure 6.10.
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Figure 6.10

Behind the scenes, the updated Pods are labelled so that they match the existing label selector. The Service is now
load-balancing requests across both versions of the app (version=4.1 and version=4.2). This happens because
the Service’s label selector is being constantly evaluated, and its Endpoint object is constantly being updated
with new matching Pods.

Once you’re happy with the updated version, forcing all traffic to use it is as simple as updating the Service’s
label selector to include the label version=4.2. Suddenly the older Pods no longer match, and the Service will
only forward traffic to the new version (Figure 6.11).

Figure 6.11

However, the old version still exists, youâ€™re just not sending traffic to it anymore. This means that if you
experience an issue with the new version, you can switch back to the previous version by simply changing the
label selector on the Service to select on version=4.1 instead of version=4.2. See Figure 6.12.
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Figure 6.12

Now everybody’s getting the old version.

This functionality can be used for all kinds of things – blue-greens, canaries, you name it. So simple, yet so
powerful.

Clean-up the lab with the following commands. These will delete the Deployment and Service used in the
examples.

$ kubectl delete -f deploy.yml
$ kubectl delete -f svc.yml

Chapter Summary

In this chapter, you learned that Services bring stable and reliable networking to apps deployed on Kubernetes.
They also perform load-balancing and allow you to expose elements of your application to the outside world
(outside of the Kubernetes cluster).

The front-end of a Service is fixed, providing stable networking for the Pods behind it. The back-end of a Service
is dynamic, allowing Pods to come and go without impacting the ability of the Service to provide load-balancing.

Services are first-class objects in the Kubernetes API and can be defined in the standard YAML manifest files.
They use label selectors to dynamically match Pods, and the best way to work with them is declaratively.
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Storage is critical to most real-world production applications. Fortunately, Kubernetes has a mature and feature-
rich storage subsystem called the persistent volume subsystem.

We’ll divide this chapter as follows:

• The big picture
• Storage provisioners
• The Container Storage Interface (CSI)
• The Kubernetes persistent volume subsystem
• Storage Classes and Dynamic Provisioning
• Demo

The big picture

First things first, Kubernetes supports lots of types of storage from lots of different places. For example, iSCSI,
SMB, NFS, and object storage blobs, all from a variety of external storage systems that can be in the cloud or
in your on-premises data center. However, no matter what type of storage you have, or where it comes from,
when it’s exposed on your Kubernetes cluster it’s called a volume. For example, Azure File resources surfaced in
Kubernetes are called volumes, as are block devices from AWS Elastic Block Store. All storage on a Kubernetes
cluster is called a volume.

Figure 7.1 shows the high-level architecture.

Figure 7.1

On the left, you’ve got storage providers. They can be your traditional enterprise storage arrays from vendors
like EMC and NetApp, or they can be cloud storage services such as AWS Elastic Block Store (EBS) and GCE
Persistent Disks (PD). All you need, is a plugin that allows their storage resources to be surfaced as volumes in
Kubernetes.

In the middle of the diagram is the plugin layer. In the simplest terms, this is the glue that connects external
storage with Kubernetes. Going forward, plugins will be based on the Container Storage Interface (CSI) which is
an open standard aimed at providing a clean interface for plugins. If you’re a developer writing storage plugins,
the CSI abstracts the internal Kubernetes storage detail and lets you develop out-of-tree.
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Note: Prior to the CSI, all storage plugins were implemented as part of the main Kubernetes code
tree (in-tree). This meant they all had to be open-source, and all updates and bug-fixes were tied
to the main Kubernetes release-cycle. This was a nightmare for plugin developers as well as the
Kubernetes maintainers. However, now that we have the CSI, storage vendors no longer need to
open-source their code, and they can release updates and bug-fixes against their own timeframes.

On the right of Figure 7.1 is the Kubernetes persistent volume subsystem. This is a set of API objects that allow
applications to consume storage. At a high-level, Persistent Volumes (PV) are how you map external storage onto
the cluster, and Persistent Volume Claims (PVC) are like tickets that authorize applications (Pods) to use a PV.

Let’s assume the quick example shown in Figure 7.2.

A Kubernetes cluster is running on AWS and the AWS administrator has created a 25GB EBS volume called
“ebs-vol”. The Kubernetes administrator creates a PV called “k8s-vol” that links back to the “ebs-vol” via the
kubernetes.io/aws-ebs plugin. While that might sound complicated, it’s not. The PV is simply a way of
representing the external storage on the Kubernetes cluster. Finally, the Pod uses a PVC to claim access to the
PV and start using it.

Figure 7.2

A couple of points worth noting.

1. There are rules safeguarding access to a single volume from multiple Pods (more on this later).
2. A single external storage volume can only be used by a single PV. For example, you cannot have a 50GB

external volume that has two 25GB Kubernetes PVs each using half of it.

Now that you have an idea of the fundamentals, let’s dig a bit deeper.

Storage Providers

Kubernetes can use storage from a wide range of external systems. These will often be native cloud services such
as AWSElasticBlockStore or AzureDisk, but they can also be traditional on-premises storage arrays providing
iSCSI or NFS volumes. Other options exist, but the take-home point is that Kubernetes gets its storage from a
wide range of external systems.

Some obvious restrictions apply. For example, you cannot use the AWSElasticBlockStore provisioner if your
Kubernetes cluster is running in Microsoft Azure.
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The Container Storage Interface (CSI)

The CSI is an important piece of the Kubernetes storage jigsaw. However, unless you’re a developer writing
storage plugins, you’re unlikely to interact with it very often.

It’s an open-source project that defines a standards-based interface so that storage can be leveraged in a uniform
way across multiple container orchestrators. In other words, a storage vendor should be able to write a single
CSI plugin that works across multiple orchestrators like Kubernetes and Docker Swarm. In reality, Kubernetes is
the focus.

In the Kubernetes world, the CSI is the preferred way to write drivers (plugins) and means that plugin code no
longer needs to exist in the main Kubernetes code tree. It also provides a clean and simple interface that abstracts
all the complex internal Kubernetes storage machinery. Basically, the CSI exposes a clean interface and hides all
the ugly volume machinery inside of the Kubernetes code (no offense intended).

From a day-to-day management perspective, your only real interaction with the CSI will be referencing the
appropriate plugin in your YAML manifest files. Also, it may take a while for existing in-tree plugins to be
replaced by CSI plugins.

Sometimes we call plugins “provisioners”, especially when we talk about Storage Classes later in the chapter.

The Kubernetes persistent volume subsystem

From a day-to-day perspective, this is where you’ll spend most of your time configuring and interacting with
Kubernetes storage.

You start out with raw storage on the left of Figure 7.3. This plugs in to Kubernetes via a CSI plugin. You then
use the resources provided by the persistent volume subsystem to leverage and use the storage in your apps.

Figure 7.3

The three main resources in the persistent volume subsystem are:

• Persistent Volumes (PV)
• Persistent Volume Claims (PVC)
• Storage Classes (SC)

At a high level, PVs are how you represent storage in Kubernetes. PVCs are like tickets that grant a Pod access
to a PV. SCs make it all dynamic.

Let’s walk through a quick example.
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Assume you have a Kubernetes cluster and an external storage system. The storage vendor provides a CSI plugin
so that you can leverage its storage assets inside of your Kubernetes cluster. You provision 3 x 10GB volumes
on the storage system and create 3 Kubernetes PV objects to make them available on your cluster. Each PV
references one of the volumes on the storage array via the CSI plugin. At this point, the three volumes are visible
and available for use on the Kubernetes cluster.

Now assume you’re about to deploy an application that requires 10GB of storage. That’s great, you already have
three 10GB PVs. In order for the app to use one of them, it needs a PVC. As previously mentioned, a PVC is like
a ticket that lets a Pod (application) use a PV. Once the app has the PVC, it can mount the respective PV into its
Pod as a volume. Refer back to Figure 7.2 if you need a visual representation.

That was a high-level example. Let’s do it.

This example is for a Kubernetes cluster running on the Google Cloud. I’m using a cloud option as they’re the
easiest to follow along with and you may be able to use the cloud’s free tier/initial free credit. It’s also possible
to follow along on other clouds by changing a few values.

The example assumes 10GB SSD volume called “uber-disk” has been pre-created in the same Google Cloud
Region or Zone as the cluster. The Kubernetes steps will be:

1. Create the PV
2. Create the PVC
3. Define the volume into a PodSpec
4. Mount it into a container

The following YAML file creates a PV object that maps back to the pre-created Google Persistent Disk called
“uber-disk”. The YAML file is available in the storage folder of the book’s GitHub repo called gke-pv.yml.

apiVersion: v1
kind: PersistentVolume
metadata:
name: pv1

spec:
accessModes:
- ReadWriteOnce
storageClassName: test
capacity:
storage: 10Gi

persistentVolumeReclaimPolicy: Retain
gcePersistentDisk:
pdName: uber-disk

Let’s step through the file.

PersistentVolume (PV) resources are defined in v1 of the core API group. You’re naming this PV “pv1”, setting its
access mode to ReadWriteOnce, and making it part of a class of storage called “test”. You’re defining it as a 10GB
volume, setting a reclaim policy, and mapping it back to a pre-created GCE persistent disk called “uber-disk”.

The following command will create the PV. It assumes the YAML file is in your PATH and is called gke-pv.yml.
The operation will fail if you have not pre-created “uber-disk” on the back-end storage system (in this example
the back-end storage is provided by Google Compute Engine).
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$ kubectl apply -f gke-pv.yml
persistentvolume/pv1 created

Check the PV exists.

$ kubectl get pv pv1
NAME CAPACITY MODES RECLAIM POLICY STATUS STORAGECLASS ...
pv1 10Gi RWO Retain Available test

If you want, you can see more detailed information with kubectl describe pv pv1, but at the moment you
have what is shown in Figure 7.4.

Figure 7.4

Let’s quickly explain some of the PV properties set out in the YAML file.

.spec.accessModes defines how the PV can be mounted. Three options exist:

• ReadWriteOnce (RWO)
• ReadWriteMany (RWM)
• ReadOnlyMany (ROM)

ReadWriteOnce defines a PV that can only be mounted/bound as R/W by a single PVC. Attempts from multiple
PVCs to bind (claim) it will fail.

ReadWriteMany defines a PV that can be bound as R/W by multiple PVCs. This mode is usually only supported
by file and object storage such as NFS. Block storage usually only supports RWO.

ReadOnlyMany defines a PV that can be bound by multiple PVCs as R/O.

A couple of things are worth noting. First up, a PV can only be opened in one mode – it is not possible for a
single PV to have a PVC bound to it in ROM mode and another PVC bound to it in RWMmode. Second up, Pods
do not act directly on PVs, they always act on the PVC object that is bound to the PV.

.spec.storageClassName tells Kubernetes to group this PV in a storage class called “test”. You’ll learn more
about storage classes later in the chapter, but you need this here to make sure the PV will correctly bind with a
PVC in a later step.

Another property is spec.persistentVolumeReclaimPolicy. This tells Kubernetes what to do with a PV when
its PVC has been released. Two policies currently exist:
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• Delete
• Retain

Delete is the most dangerous, and is the default for PVs that are created dynamically via storage classes (more
on these later). This policy deletes the PV and associated storage resource on the external storage system, so
will result in data loss! You should obviously use this policy with caution.

Retain will keep the associated PV object on the cluster as well as any data stored on the associated external
asset. However, it will prevent another PVC from using the PV in future.

If you want to re-use a retained PV, you need to perform the following three steps:

1. Manually delete the PV on Kubernetes
2. Re-format the associated storage asset on the external storage system to wipe any data
3. Recreate the PV

Tip: If you are experimenting in a lab and re-using PVs, it’s easy to forget that you will have to
perform the previous three steps when trying to re-use an old deleted PV that has the retain policy.

.spec.capacity tells Kubernetes how big the PV should be. This value can be less than the actual physical storage
asset but cannot be more. For example, you cannot create a 100GB PV that maps back to a 50GB device on the
external storage system. But you can create a 50GB PV that maps back to a 100GB external volume (but that
would be wasteful).

Finally, the last line of the YAML file links the PV to the name of the pre-created device on the back-end.

You can also specify vendor-specific attributes using the .parameters section of a PV YAML. You’ll see more
of this later when you look at storage classes, but for now, if your storage system supports pink fluffy NVMe
devices, this is where you’d specify them.

Now that you’ve got a PV, let’s create a PVC so that a Pod can claim access to the storage.

The following YAML defines a PVC that can be used by a Pod to gain access to the pv1 PV you created earlier.
The file is available in the storage folder in the book’s GitHub repo called gke-pvc.yml.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pvc1

spec:
accessModes:
- ReadWriteOnce
storageClassName: test
resources:
requests:

storage: 10Gi

As with the PV, PVCs are a stable v1 resource in the core API group.

The most important thing to note about a PVC object is that the values in the .spec section must match with the
PV you are binding it with. In this example, access modes, storage class, and capacity must match with the PV.
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Note: It’s possible for a PV to have more capacity than a PVC. For example, a 10GB PVC can be
bound to a 15GB PV (obviously this will waste 5GB of the PV). However, a 15GB PVC cannot be
bound to a 10GB PV.

Figure 7.5 shows a side-by-side comparison of the example PV and PVC YAML files and highlights the properties
that need to match.

Figure 7.5

Deploy the PVC with the following command. It assumes the YAML file is called “gke-pvc.yml” and exists in
your PATH.

$ kubectl apply -f gke-pvc.yml
persistentvolumeclaim/pvc1 created

Check that the PVC is created and bound to the PV.

$ kubectl get pvc pvc1
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
pvc1 Bound pv1 10Gi RWO test

OK, you’ve got a PV called pv1 representing 10GB of external storage on our Kubernetes cluster and you’ve
bound a PVC called pvc1 to it. Let’s find out how a Pod can leverage that PVC and use the actual storage.

More often than not, you’ll deploy your applications via higher-level controllers like Deployments and State-
fulSets, but to keep the example simple, you’ll deploy a single Pod. Pods deployed like this are often referred to
as “singletons” and are not recommended for production as they do not provide high availability and cannot
self-heal.

The following YAML defines a single-container Pod with a volume called “data” that leverages the PVC and
PV objects you already created. The file is available in the storage folder of the book’s GitHub repo called
volpod.yml.
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apiVersion: v1
kind: Pod
metadata:
name: volpod

spec:
volumes:
- name: data
persistentVolumeClaim:

claimName: pvc1
containers:
- name: ubuntu-ctr
image: ubuntu:latest
command:
- /bin/bash
- "-c"
- "sleep 60m"
volumeMounts:
- mountPath: /data

name: data

You can see that the first reference to storage is .spec.volumes. This defines a volume called “data” that leverages
the previously created PVC called “pvc1”.

You can run the kubectl get pv and kubectl get pvc commands to show that you’ve already created a PVC
called “pvc1” that is bound to a PV called “pv1”. kubectl describe pv pv1 will also prove that pv1 relates to a
10GB GCE persistent disk called “uber-disk”.

Deploy the Pod with the following command.

$ kubectl apply -f volpod.yml
pod/volpod created

You can run a kubectl describe pod volpod command to see that the Pod is successfully using the data volume
and the pvc1 claim.

Time for a quick summary before we look at how you can make all of this dynamic with storage classes.

You start out with storage assets on an external storage system. You use a CSI plugin to integrate the external
storage system with Kubernetes, and you use Persistent Volume (PV) objects to make the external systems assets
accessible and usable. Each PV is an object on the Kubernetes cluster that maps back to a specific storage asset
(LUN, share, blob…) on the external storage system. Finally, for a Pod to use a PV, it needs a Persistent Volume
Claim (PVC). This is like a ticket that grants the Pod to the PV. Once the PV and PVC objects are created and
bound, the PVC can be referenced in a PodSpec and the associated PV mounted as a volume in a container.

Don’t worry if this seems complicated, we’ll pull it all together in a demo at the end of the chapter.

Storage Classes and Dynamic Provisioning

Everything you’ve seen so far is correct and fundamental to Kubernetes storage. But it doesn’t scale – there’s no
way somebody managing a large Kubernetes environment can manually create and maintain large numbers of
PVs and PVCs. You need something more dynamic.
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Enter storage classes…

As the name suggests, storage classes allow you to define different classes, or tiers, of storage. How you define
your classes is up to you, but will depend on the types of storage you have access to. For example, you might
define a fast class, a slow class, and an encrypted class.

As far as Kubernetes goes, storage classes are defined as resources in the storage.k8s.io/v1 API group. The
resource type is StorageClass, and you define them in regular YAML files that you POST to the API server for
deployment. You can use the sc shortname to refer to StorageClass objects when using kubectl.

Note:You can see a full list of API resources, and their shortnames, using the kubectl api-resources
command. The output of the command shows; the API group that each resource belongs to (an
empty string indicates the core API group), if the resource is namespaced, and what its equivalent
kind is when writing YAML files.

A StorageClass YAML

The following is a simple example of a StorageClass YAML file. It defines a class of storage called “fast”, that is
based on AWS solid state drives (io1) in the Ireland Region (eu-west-1a). It also requests a performance level of
10 IOPs per gigabyte.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: fast

provisioner: kubernetes.io/aws-ebs
parameters:
type: io1
zones: eu-west-1a
iopsPerGB: "10"

As with all Kubernetes YAML, kind tells the API server what type of object is being defined, and apiVersion tells
it which version of the schema to apply to the resource. metadata.name is an arbitrary string value that lets you
give the object a friendly name – this example is defining a class called “fast”. provisioner tells Kubernetes which
plugin to use, and the parameters field lets you finely tune the type of storage to leverage from the back-end.

A few quick things worth noting:

1. StorageClass objects are immutable – this means you cannot modify them once deployed
2. metadata.name should be meaningful as it’s how other objects will refer to the class
3. The terms provisioner and plugin are used interchangeably
4. The parameters section is for plugin-specific values, and each plugin is free to support its own set of

values. Configuring this section requires knowledge of the storage plugin and associated storage back-
end
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Multiple StorageClasses

You can configure as many StorageClass objects as you need. However, each one relates to a single provisioner.
For example, if you have a Kubernetes cluster with StorageOS and Portworx storage back-ends, you will need at
least two StorageClass objects. That said, each back-end can offer multiple classes/tiers of storage, each of which
can have its own StorageClass. For example, you could have the following two StorageClass objects for different
classes of storage from the same back-end:

1. “fast-secure” for high performance encrypted volumes
2. “fast” for high-performance unencrypted volumes

An example of a StorageClass defining an encrypted volume on a Portworx back-end might look like this. It will
only work if you have a Portworx.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: portworx-db-secure

provisioner: kubernetes.io/portworx-volume
parameters:
fs: "xfs"
block_size: "32"
repl: "2"
snap_interval: "30"
io-priority: "medium"
secure: "true"

As you can see, the .parameters section is long and lists some cryptic values. Configuring this section
requires knowledge of the plugin and what is supported on the storage back-end. Consult your storage plugin
documentation for details.

Implementing StorageClasses

The basic workflow for deploying and using a StorageClass on your cluster is as follows:

1. Create your Kubernetes cluster with a storage back-end
2. Ensure the plugin for the storage back-end is available
3. Create a StorageClass object
4. Create a PVC object that references the StorageClass by name
5. Deploy a Pod that uses volume based on the PVC

Notice that the workflow does not include creating a PV. This is because storage classes create PVs dynamically.

The following YAML snippet contains the definitions for a StorageClass, a PersistentVolumeClaim, and a Pod.
All three objects can be defined in a single YAML file by separating each object with three dashes (---).

Notice how the PodSpec references the PVC by name, and in turn, the PVC references the SC by name.
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kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: fast # Referenced by the PVC

provisioner: kubernetes.io.gce-pd
parameters:
type: pd-ssd

---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mypvc # Referenced by the PodSpec
namespace: mynamespace

spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 50Gi
storageClassName: fast # Matches name of the SC

---
apiVersion: v1
kind: Pod
metadata:
name: mypod

spec:
volumes:
- name: data

persistentVolumeClaim:
claimName: mypvc # Matches PVC name

containers: ...
<SNIP>

The previous YAML is truncated and does not include a full PodSpec.

So far, you’ve seen a few SC definitions. However, each one has been slightly different as each one has related
to a different provisioner (storage plugin/back-end). You will need to refer to the documentation of your storage
plugin to know which options your provisioner supports.

Let’s quickly summarize what you’ve learned about storage classes before walking through a demo.

StorageClasses make it so that you don’t have to create PVs manually. You create the StorageClass object and use
a plugin to tie it to a particular type of storage on a particular storage back-end. For example, high-performance
AWS SSD storage in the AWSMumbai Region. The SC needs a name, and is defined in a YAML file that you deploy
using kubectl. Once deployed, the StorageClass watches the API server for new PVC objects that reference its
name. When matching PVCs appear, the StorageClass dynamically creates the required volume on the back-end
storage system as well as the PV on Kubernetes.

There’s always more detail, such as mount options and volume binding modes, but what you’ve learned so far is
enough to get you more than started.

Let’s bring everything together with a demo.
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Demo

In this section, you’ll walk through a demo that uses a StorageClass. The basic steps of the demo will be:

1. Create a StorageClass
2. Create a PVC
3. Create a Pod that leverages it all

The Pod will map a volume using the PVC, which in turn will trigger the SC to dynamically create a PV and
associated external storage asset. The demo will be on the Google Cloud Platform and assumes you have a
working cluster with kubectl correctly configured.

Clean-up

If you’ve been following along, you’ll have a Pod, a PVC, and PV already created. Let’s delete these before
proceeding with the demo.

$ kubectl delete pods volpod
pod "volpod" deleted

$ kubectl delete pvc pvc1
persistentvolumeclaim "pvc1" deleted

$ kubectl delete pv pv1
persistentvolume "pv1" deleted

Create a StorageClass

We’ll use the following YAML to create a StorageClass called “slow” based on Google GCE standard persistent
disks. We won’t get into the details of the storage back-end, but suffice to say it’s a slow tier of disk. The YAML
also sets the reclaim policy so that data will not be lost when PVC bindings are released. Finally, it uses an
annotation to attempt to set this as the default storage class on the cluster.

Here’s the YAML file, it’s available in the storage folder of the book’s GitHub repo called google-sc.yml.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: slow
annotations:
storageclass.kubernetes.io/is-default-class: "true"

provisioner: kubernetes.io/gce-pd
parameters:
type: pd-standard

reclaimPolicy: Retain

Two things to note before you deploy the SC:
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1. This lab was tested on Kubernetes 1.16.2
2. Setting default storage classes on the tested version of Kubernetes is done via an annotation. This is likely

to change in future versions.

Deploy the SC with the following command:

$ kubectl apply -f google-sc.yml
storageclass.storage.k8s.io/slow created

You can check and inspect it with kubectl get sc slow and kubectl describe sc slow. For example:

$ kubectl get sc slow
NAME PROVISIONER AGE
slow (default) kubernetes.io/gce-pd 32s

Create a PVC

Use the following YAML to create a PVC object that references the slow StorageClass created in the previous
step. The YAML is available in the storage folder of the book’s GH repo called google-pvc.yml.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pv-ticket

spec:
accessModes:
- ReadWriteOnce
storageClassName: slow
resources:
requests:

storage: 25Gi

The important things to note are that the PVC is called pv-ticket, it’s linked to the slow class, and it’s for a
25GB volume.

Let’s deploy it.

$ kubectl apply -f google-pvc.yml
persistentvolumeclaim/pv-ticket created

Verify the operation with a kubectl get pvc.
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$ kubectl get pvc pv-ticket
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
pv-ticket Bound pvc-881a23... 25Gi RWO slow

Notice that the PVC is already bound to the pvc-881a23... volume – you didn’t have to manually create a PV.
The mechanics behind the operation are as follows:

1. You created the slow StorageClass
2. A loop was created to watch the API Server for new PVCs referencing the slow StorageClass
3. You created the pv-ticket PVC that requested binding to a 25GB volume from the slow StorageClass
4. The StorageClass loop noticed this PVC and dynamically created the requested PV

Use the following command to verify the presence of the automatically created PV on the cluster.

$ kubectl get pv
NAME CAPACITY Mode STATUS CLAIM STORAGECLASS
pvc-881... 25Gi RWO Bound pv-ticket slow

Some of the columns have been trimmed from the output to better fit the book.

The following YAML defines a single-container Pod. The Pod template defines a volume called data using the
pv-ticket PVC. It also contains a container that mounts the data volume to /data. The YAML file is in the
storage folder of the book’s GitHub repo called google-pod.yml.

apiVersion: v1
kind: Pod
metadata:
name: class-pod

spec:
volumes:
- name: data
persistentVolumeClaim:

claimName: pv-ticket
containers:
- name: ubuntu-ctr
image: ubuntu:latest
command:
- /bin/bash
- "-c"
- "sleep 60m"
volumeMounts:
- mountPath: /data

name: data

Deploy the Pod with kubectl apply -f google-pod.yml.

Congratulations. You’ve deployed a new default StorageClass and used a PVC to dynamically create a PV. You
also have a Pod that has mounted the PVC as a volume in a container.
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Clean-up

If you’ve followed along with the demo, you’ll have a Pod called “class-pod” with a volume using the “pv-ticket”
PVC that was dynamically created via the “slow” SC. The following commands will delete all of these objects.

$ kubectl delete pod class-pod
pod "class-pod" deleted

$ kubectl delete pvc pv-ticket
persistentvolumeclaim "pv-ticket" deleted

$ kubectl delete sc slow
storageclass.storage.k8s.io "slow" deleted

Using the default StorageClass

One last thing…

If your cluster has a default storage class, you can deploy a Pod using just a PodSpec and a PVC. You do not
need to manually create a StorageClass. However, real-world production clusters will usually have multiple
StorageClasses, so it’s best practice to create and manage StorageClasses that suit your business and application
needs. The default StorageClass is normally only useful in development environments and times when you do
not have specific storage requirements.

Chapter Summary

In this chapter, you learned that Kubernetes has a powerful storage subsystem that allows it to leverage storage
from a wide variety of external storage back-ends.

Each back-end requires a plugin so that its storage assets can be used on the cluster, and the preferred type of
plugin is a CSI plugin. Once a plugin is enabled, Persistent Volumes (PV) are used to represent external storage
resources on the Kubernetes cluster, and Persistent Volume Claims (PVC) are used to give Pods access to PV
storage.

Storage Classes take things to the next level by allowing applications to dynamically request storage. You create
a Storage Class object that references a class, or tier, of storage from a storage back-end. Once created, the
Storage Class watches the API Server for new Persistent Volume Claims that reference the Storage Class. When
a matching PVC arrives, the SC dynamically creates the storage and makes it available as a PV that can be
mounted as a volume into a Pod (container).
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Most business applications comprise two main parts:

• The application binary
• A configuration

A simple example is a web server such as NGINX or httpd (Apache). Neither are very useful without a
configuration. However, when you combine the application with a configuration it becomes extremely useful.

In the past, we coupled the application and the configuration into a single easy to deploy unit. As we moved
into the early days of cloud-native microservices applications we brought this model with us. However, it’s an
anti-pattern in the cloud-native world. Cloud-native microservices applications should de-couple the application
and the configuration, bringing benefits such as:

• Re-usable application images
• Simpler testing
• Simpler and fewer disruptive changes

We’ll explain all of these, and more, as we go through the chapter.

We’ll split this chapter as follows:

• The big picture
• ConfigMap theory
• Hands-on with ConfigMaps

The big picture

As alreadymentioned, most applications comprise two distinct parts – the application binary and a configuration.
This model doesn’t change with cloud-native microservices applications running on Kubernetes. However, a core
principle of these types of applications is decoupling the two components – you build and store them separately,
but bring them together at runtime.

Let’s consider an example to understand some of the benefits…

Quick example

Imagine the following.

You work for a company that deploys modern applications to Kubernetes, and you have three distinct
environments:
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• Dev
• Test
• Prod

Your developers write and update applications. Initial testing is performed in the dev environment, further testing
is done in the test environment where more stringent rules and the likes are applied. Finally, stable components
graduate to the prod environment.

Each environment has subtle differences, such as; number of nodes, configuration of nodes, network and security
policies, different sets of credentials and certificates, and more.

You currently package each application microservice with its configuration baked into the container (the
application and configuration are packaged as a single artefact). With this in mind, you have to perform all
of the following for every business application:

• build three distinct images (one for dev, one for test, one for prod)
• store the images in three distinct repositories (dev, test, prod)
• run each version of the image in a specific environment (dev in dev, test in test, prod in prod)

Every time you make a change to an application configuration, you need to create an entire new image and
perform some type of rolling update to the entire app – even if the change is something as simple as fixing a typo
or changing the size or colour of a font ;-)

Analysing the example

There are several drawbacks to the approach of storing the application and its configuration as a single artefact
(container image).

As your dev, test, and prod environments have different characteristics, each environment needs its own image.
A prod image will not work in the dev or test environments because of the differences. This requires extra
work to create and maintain 3x copies each application. This can complicate matters and increase the chances of
misconfiguration.

You also have to store 3x images in 3 distinct repositories. Plus, you need to be very careful about permissions
to repositories. This is because your prod images will contain sensitive configuration data, sensitive passwords,
and sensitive encryption keys. You probably don’t want dev and test engineers to have access to prod images –
access to the images means access to the sensitive data stored in them.

Also, it’s harder to troubleshoot an issue if you push an update that includes both an application binary update
as well as a configuration update. If the two are tightly coupled, it’s harder to isolate the fault. Also, if you need
to make a minor configuration change (for example fix a prominent typo on a web page) you need to re-package,
re-test, and re-deploy the entire application binary and configuration.

None of this is ideal.

What it looks like in a de-coupled world

Now consider you work for the same company but you do things differently. This time, your application and its
configuration are de-coupled. This time;
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• you build a single image that is shared across all three environments
• you store a single image in a single repository
• You run a single version of each image in all environments

To make this work, you build your application images as generically as possible with no embedded configuration.
You then create and store configurations in separate objects and apply a configuration to the application at when
you run it. For example, you have a single copy of a web server that you can deploy to all three environments.
When you deploy it to prod you apply the prod configuration to it. When you run it in dev, you apply the dev
configuration to it…

In this model, you create and test a single version of each application image that you store in a single repository.
All staff can have access to the image repository as there is no sensitive data stored in the images. Finally, you
can easily push changes to the application and its configuration independent of each other – updating a simple
typo no longer requires the entire application binary and image to be rebuilt and re-deployed.

Let’s see how Kubernetes makes this possible…

ConfigMap theory

Kubernetes provides an object called a ConfigMap (CM) that lets you store configuration data outside of a Pod.
It also lets you dynamically inject the data into a Pod at run-time.

Note:Whenwe use the term Pod wemean the Pod and all of its containers. After all, it is ultimately
the container that receives the configuration data.

ConfigMaps are first-class objects in the Kubernetes API under the core API group, and they’re v1. This tells us
a lot of things:

1. They’re stable (v1)
2. They’ve been around for a while (the fact that they’re int he core API group)
3. You can operate on them with the usual kubectl commands
4. They can be defined and deployed via the usual YAML manifests

ConfigMaps are typically used to store non-sensitive configuration data such as:

• Environment variable values
• Entire configuration files (things like web server configs and database configs)
• Hostnames
• Service ports
• Accounts names
• more…

You should not use ConfigMaps to store sensitive data such as certificates and passwords. Kubernetes provides
a different object, called a Secret, for storing sensitive data. Secrets and ConfigMaps are very similar in design
and implementation, the major difference is that Kubernetes takes steps obscure the values stored in Secrets. It
makes no such efforts to obscure data stored in ConfigMaps.
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How do ConfigMaps work

At a high-level, a ConfigMap is a place to store configuration data that can be seamlessly injected into containers
at runtime, then leveraged in ways that are invisible to applications.

Let’s look a bit closer…

Behind the scenes, ConfigMaps are a map of key/value pairs and we call each key/value pair an entry.

• Keys are an arbitrary name that can be created from alphanumerics, dashes, dots, and underscores
• Values can contain anything, including carriage returns
• We separate keys and values with a colon – key:value

Some simple examples might be:

• db-port:13306
• hostname:msb-prd-db1

More complex examples can store entire configuration files like this one:

key: conf value:

directive in;
main block;
http {

server {
listen 80 default_server;
server_name *.msb.com;
root /var/www/msb.com;
index index.html

location / {
root /usr/share/nginx/html;
index index.html;

}
}

}

Once data is stored in a ConfigMap, it can be injected into containers at run-time via any of the following
methods:

• environment variables
• arguments to the container’s startup command
• files in a volume

All of the methods work seamlessly with existing applications. In fact, all an application sees is its configuration
data in either; an environment variable, an argument to a startup command, or a file in a filesystem. The
application is unaware that the data originally came from a ConfigMap.
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Figure 8.1 shows how the pieces connect.

Figure 8.1

The most flexible of the three methods is the volume option, and the most limited is the startup command. We’ll
look at each in turn, but before we do that we’ll quickly consider a Kubernetes-native application.

ConfigMaps and Kubernetes-native apps

A Kubernetes-native application is an application that knows it’s running on Kubernetes and has the intelligence
to query the Kubernetes API. As a result, a Kubernetes-native application can access ConfigMap data directly
via the API without needing things like environment variables and volumes. This can simplify application
configuration, but the application will only run on Kubernetes. At the time of writing, Kubernetes-native
applications are rare.

Hands-on with ConfigMaps

Aswithmost Kubernetes objects, you can create them imperatively and declaratively.We’ll look at the imperative
method first.

Creating ConfigMaps imperatively

The command to imperatively create a ConfigMap is kubectl create configmap, but you can shorten configmap
to cm. The command accepts two sources of data:

• literal values on the command line (--from-literal)
• files referenced on the command line (--from-file)

Run the following command to create a ConfigMap called testmap1, populated with two map entries from literal
values passed on the command line.
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$ kubectl create configmap testmap1 \
--from-literal shortname=msb.com \
--from-literal longname=magicsandbox.com

The following describe command shows how the two entries are stored in the map.

$ kubectl describe cm testmap1
Name: testmap1
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
shortname:
----
msb.com
longname:
----
magicsandbox.com
Events: <none>

You can see that the object is essentially a map of key/value pairs dressed up as a Kubernetes object. The two
map entries are exactly what you would expect from the inputs to the command: - Entry 1: shortname=msb.com
- Entry 2: longname=magicsandbox.com

The next command will create a ConfigMap from a file called cmfile.txt. The command assumes you have a
local file called cmfile.txt in your working directory. The file contains the following single line of text, and you
can clone a copy from the book’s GitHub repo under the configmaps directory.

Magic Sandbox, hands-on learning that blurs the lines between training and the real world.

Run this command to create the ConfigMap from the contents of the file. Notice that the command uses the
--from-file argument instead of --from-literal.

$ kubectl create cm testmap2 --from-file cmfile.txt
configmap/testmap2 created

The following describe command is interesting as it shows the following:

• A single map entry was created
• The name of the entry’s key is the name of the file (cmfile.txt)
• The entry’s value is the contents of the file
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$ kubectl describe cm testmap2
Name: testmap2
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
cmfile.txt:
----
Magic Sandbox, hands-on learning that blurs the lines between training and the real world.
Events: <none>

Inspecting ConfigMaps

ConfigMaps are first class API objects. This means you can inspect and query them in the same way as any other
API object. You’ve already seen kubectl describe commands, but other kubectl commands also work. kubectl
get can list all ConfigMaps, and the usual -o yaml and -o json flags pull the full configuration from the cluster
store.

Run a kubectl get to list all ConfigMaps in your current Namespace.

$ kubectl get cm
AME DATA AGE
testmap1 2 11m
testmap2 1 2m23s

The following kubectl get with the -o yaml flag shows the entire configuration of the object and hints at
something interesting.

$ kubectl get cm testmap1 -o yaml
apiVersion: v1
data:
longname: magic-sandbox
shortname: msb

kind: ConfigMap
metadata:
creationTimestamp: "2019-10-27T11:42:23Z"
name: testmap1
namespace: default
resourceVersion: "39223"
selfLink: /api/v1/namespaces/default/configmaps/testmap1
uid: 0b2f5daa-5905-419c-a1bc-0289e32fdead

The interesting thing to note is that ConfigMap objects don’t have the concept of state (desired state and actual
state). This is why they have a data block instead of spec and status blocks.

Let’s find out how to create a ConfigMap declaratively before we look at how to inject data from one into a Pod.
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Creating ConfigMaps declaratively

The following ConfigMapmanifest defines twomap entries; firstname and lastname. It is available in the book’s
GitHub repo under the configmap folder called multimap.yml. Alternatively, you can create an empty file and
practice writing your own manifests from scratch.

kind: ConfigMap
apiVersion: v1
metadata:
name: multimap

data:
given: Nigel
family: Poulton

You can see that a ConfigMap manifest has the normal kind and apiVersion fields, as well as the usual metadata
section. However, as previously mentioned, they do not have a spec section. Instead, they have a data section
that defines the map of key/values.

You can deploy it with the following command (the command assumes you have a copy of the file in your
working directory called multimap.yml).

$ kubectl apply -f multimap.yml
configmap/multimap created

This next YAML looks slightly more complicated but it’s actually not – it creates a ConfigMap with just a single
map entry in the data block. It looks more complicated because the value portion of the map entry is a full
configuration file.

kind: ConfigMap
apiVersion: v1
metadata:
name: test-conf

data:
test.conf: |
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M

The previous YAML file inserts a pipe character (|) after the name of the entry’s key property. This tells Kubernetes
that everything following the pipe is to be treated as a single literal value. Therefore, the ConfigMap object is
called test-config and it contains a single map entry as follows:

• Key: test.conf
• Value: env = plex-test endpoint = 0.0.0.0:31001 char = utf8 vault = PLEX/test log-size =
512M

You can deploy the previous CM with the following kubectl command. The command assumes you have a local
copy of the file called singlemap.yml.
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$ kubectl apply -f singlemap.yml
configmap/test-conf created

List and describe the multimap and test-conf ConfigMaps you just created. The following shows the output of
a kubectl describe against the test-conf map.

$ kubectl describe cm test-conf
Name: test-conf
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"v1","data":{"test.config":"env =
plex-test\nendpoint = 0.0.0.0:31001\nchar = utf8
\nvault = PLEX/test\nlog-size = 512M\n"},"...

Data
====
test.config:
----
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M

Events: <none>

ConfigMaps are extremely flexible and can be used to insert complex configuration files such as JSON files and
even scripts into containers at run-time.

Injecting ConfigMap data into Pods and containers

You’ve seen how to imperatively and declaratively create ConfigMap objects and populate them with data. Now
let’s see how to get that data into applications running in containers.

There are three main ways to inject ConfigMap data into a container:

• As environment variables
• As arguments to container startup commands
• As files in a volume

Let’s look at each.

ConfigMaps and environment variables

A common way to get ConfigMap data into a container is via environment variables. You create the ConfigMap,
then you map its entries into environment variables in the container section of a Pod template. When
the container is started, the environment variables appear in the container as standard Linux or Windows
environment variables.
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Figure 8.2. shows this.

Figure 8.2

You already have a ConfigMap called multimap that has two values:

• given=Nigel
• family=Poulton

The following Pod manifest deploys a single container that creates two environment variables in the container.

• FIRSTNAME: Maps to the given entry in the multimap ConfigMap
• LASTNAME: Maps to the family entry in the multimap ConfigMap

When the Pod is scheduled and the container started, FIRSTNAME and LASTNAMEwill be created as standard Linux
environment variables inside the container. These can then be used by applications running in the container.

There’s a manifest called envpod.yml in the configmaps folder of the book’s GitHub repo. The following
commands will deploy the Pod from the envpod.yml file and then list environment variables that include the
name string in their name – this will list the firstname and lastname variables. You’ll see that they are populated
with the values from the multimap ConfigMap.

$ kubectl apply -f envpod.yml
pod/envpod created

$ kubectl exec envpod env | grep NAME
HOSTNAME=envpod
FIRSTNAME=Nigel
LASTNAME=Poulton

A drawback to using ConfigMaps with environment variables is that environment variables are static. This
means that any updates you make to the values in the ConfigMap will not be reflected in running containers.
For example, if you update the given and family values in the ConfigMap, environment variables in existing
containers will not get the updates.
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ConfigMaps and container startup commands

The concept of using ConfigMaps with container startup commands is simple. The high-level looks like this.
It’s possible to specify a startup command for a container, and you can customize that startup command with
variables. Let’s look at a simple example…

The following Pod template (the part of a YAML manifest that defines a Pod and its containers) defines a single
container called args1. The container is based on the busybox image and runs the /bin/sh command outlined
on line 5.

spec:
containers:
- name: args1

image: busybox
command: [ "/bin/sh", "-c", "echo First name $(FIRSTNAME) last name $(LASTNAME)" ]
env:
- name: FIRSTNAME

valueFrom:
configMapKeyRef:

name: multimap
key: given

- name: LASTNAME
valueFrom:
configMapKeyRef:

name: multimap
key: family

If you look closely at the startup command you’ll see that it references two variables; FIRSTNAME and LASTNAME.
Each of these is defined in the env: section directly below the startup command.

• FIRSTNAME is based on the given entry in the multimap ConfigMap
• LASTNAME is based on the family entry in the same ConfigMap

The relationship is shown in in Figure 8.3.

Figure 8.3
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Running a Pod based on the previous YAML will print “First name Nigel last name Poulton” to the container’s
log file. You can see the logs of the container with command $ kubectl logs <pod-name> -c args1

Describing the Pod will yield the following lines describing the environment of the Pod.

Environment:
FIRSTNAME: <set to the key 'given' of config map 'multimap'>
LASTNAME: <set to the key 'family' of config map 'multimap'>

Using ConfigMaps with container startup commands suffers from the same limitations as using them with
environment variables – updates to entries in the map will not be reflected in running containers.

ConfigMaps and volumes

Using ConfigMaps with volumes is the most flexible option. You can reference entire configuration files as well
as make updates to the ConfigMap and have them reflected in running containers. This means you can make
changes to entries in a ConfigMap after you’ve deployed a container, and those changes be seen in the container
and available for running applications.

The high-level process for exposing ConfigMap data via a volume looks like this.

1. Create the ConfigMap
2. Create a ConfigMap volume in the Pod template
3. Mount the ConfigMap volume into the container
4. Entries in the ConfigMap will appear in the container as individual files

This process is shown in Figure 8.4

Figure 8.4

You still have the multimap ConfigMap with two values.

• given=Nigel
• family=Poulton

The following YAML creates a Pod called cmvol with the following configuration.

• spec.volumes creates a volume called volmap based on the multimap ConfigMap
• spec.containers.volumeMounts mounts the volmap volume to /etc/name
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apiVersion: v1
kind: Pod
metadata:
name: cmvol

spec:
volumes:
- name: volmap

configMap:
name: multimap

containers:
- name: ctr

image: nginx
volumeMounts:
- name: volmap

mountPath: /etc/name

Let’s step through things in a little more detail…

The spec.volumes block creates a special type of volume called a ConfigMap volume. The volume is called
volmap and based on the multimap ConfigMap. This means that the volume will be populated with the entries
stored in the data block of the ConfigMap. In this example, the volume will have two files; given and family.
The given file will have the contents Nigel, and the family file will have the contents Poulton.

The spec.containers block mounts the volmap volume into the container at /etc/name. This means that two
files will appear in the container as:

• /etc/name/given
• /etc/name/family

The following commands deploy the container (from the cmvol.yml manifest) and then run a kubectl exec
command to list the files in the ‘/etc/name/ directory.

$ kubectl apply -f cmpod.yml
pod/cmvol created

$ kubectl exec volpod ls /etc/name
family
given

Chapter Summary

ConfigMaps are the mechanism that Kubernetes provides for decoupling applications and their configuration.

ConfigMaps are first-class object in the Kubernetes API and can be created and manipulated with the usual
kubectl create, kubectl get, and kubectl describe commands. They’re ideal for storing application
configuration parameters as well as entire configuration files, but they shouldn’t be used to store sensitive data.

ConfigMap data gets injected into containers at run-time, and you can inject data via environment variables,
container startup commands, and volumes. The volumes method is the most flexible as it allows you work with
entire configuration files. It also allows updates to eventually be reflected already-running containers.
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Security is more important than ever before, and Kubernetes is no exception. Fortunately, there are a lot of things
that can be done to secure Kubernetes, and we’ll cover some of them in the next chapter. However, before we do
this, it’s worth taking a moment to model some of the common threats.

Threat model

Threat modeling is the process of identifying vulnerabilities so that we can put measures in place to prevent
and mitigate them. In this chapter, we’ll look at the popular STRIDE model and see how it can be applied to
Kubernetes.

STRIDE defines six categories of potential threat:

• Spoofing
• Tampering
• Repudiation
• Information disclosure
• Denial of service
• Elevation of privilege

While the model is good, it’s important to keep in mind that no threat model guarantees to cover all possible
threats. However, models like this are useful in giving us a structured way to look at an entire system.

For the rest of this chapter, we’ll look at each of the six threat categories in turn. For each one, we’ll give a quick
description, and then look at some of the ways it applies to Kubernetes and how we can prevent and mitigate.

This chapter doesn’t attempt to cover everything. It’s intended to give you ideas and get you started.

Spoofing

Spoofing is pretending to be something, or somebody, you are not. In the context of information security, it’s
pretending to be a different user or entity, with the aim of gaining extra privileges on a system.

Let’s look at how Kubernetes authenticates users to prevent spoofing.

Securing communications with the API server

Kubernetes is comprised of lots of small components that work together. These include control plane components
such as the API server, controller manager, scheduler, cluster store, and others. It also includes node components
such as the kubelet and container runtime. Each of these has its own set of privileges that allow it to interact with,
and even modify the cluster. Even though Kubernetes implements a least-privilege model, spoofing the identity
of any of these components can have unforeseen and potentially disastrous consequences.
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Fortunately, Kubernetes implements a security model that requires components to authenticate via mutual TLS
(mTLS). This requires both parties (the sender and the receiver) to authenticate each other via cryptographically
signed certificates. This is good, and Kubernetes makes things easy by auto-rotating certificates etc. However,
it’s vital that you consider the following:

1. A typical Kubernetes installation will auto-generate a self-signed certificate authority (CA) during the
bootstrap process. This is the CA that will issue certificates to all cluster components. It’s better than
nothing, but on its own it probably isn’t enough for your production environment.

2. Mutual TLS is only as secure as the CA that issued the certificates. Compromising the CA can render the
entire mTLS layer ineffective. So, keep the CA secure!

A good practice is to ensure that certificates issued by the internal Kubernetes CA are only used and trusted
within the Kubernetes cluster. This requires careful approval of certificate signing requests, as well as making
sure the Kubernetes CA is not added as a trusted CA for any components outside of Kubernetes.

As mentioned in previous chapters, all interaction with Kubernetes is via the API server and subject to
authentication and authorization checks. This is true for internal and external components. As a result, the
API server needs a way to authenticate (trust) internal and external sources. A good way to do this is to have
two trusted key pairs – one for authenticating internal components and the other for authenticating external
components. To accomplish this, Kubernetes leverages an internal self-signed CA to issue keys to internal
components, as well as one or more trusted 3rd-party CAs to issue keys to external components (Kubernetes
obviously needs configuring to trust the 3rd-party CAs). This configuration ensures the API server trusts internal
components possessing a certificate issued by the cluster’s self-signed CA, as well as external components
possessing a certificate signed by the 3rd-party CA.

Securing Pod communications

As well as spoofing access to the cluster, there is also the threat of spoofing an application for app-to-app
communications. This is when one Pod spoofs another. Fortunately, we can leverage Kubernetes Secrets to mount
certificates into Pods that can then be used to authenticate Pod identity.

While on the topic of Pods, every Pod has an associated ServiceAccount that is used to provide an identity for
the Pod within the cluster. This is achieved by automatically mounting a service account token into every Pod
as a Secret. Two points to note:

1. The service account token allows access to the API server
2. Most Pods probably don’t need to access the API server

With these two points in mind, it is recommended to set automountServiceAccountToken to false for Pods that
do not need to communicate with the API server. The following Pod manifest shows how to do this.
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apiVersion: v1
kind: Pod
metadata:
name: service-account-example-pod

spec:
serviceAccountName: some-service-account
automountServiceAccountToken: false
<Snip>

Tampering

Tampering is the act of changing something in a malicious way. In relation to information security, the goal of
tampering is usually to cause one of the following:

• Denial of service. Tampering with the resource to make it unusable.
• Elevation of privilege. Tampering with a resource to gain additional privileges.

Tampering can be hard to avoid, so a common counter-measure is to make it obvious when something has been
tampered with. A common example, outside of information security, is drug packaging. Most over-the-counter
drugs are packaged with tamper-proof seals. These make it obvious to the consumer if the product has been
tampered with because the tamper-proof seal has been broken.

Let’s first look at some of the cluster components that can be tampered with.

Tampering with Kubernetes components

All of the following Kubernetes components, if tampered with, can cause harm:

• etcd
• Configuration files for the API server, controller-manager, scheduler, etcd, and kubelet
• Container runtime binaries
• Container images
• Kubernetes binaries

Generally speaking, tampering happens either in transit or at rest. In transit refers to data while it is being
transmitted over the network, whereas at rest refers to data stored in memory or on disk.

TLS is a great tool for protecting against in transit tampering as it provides built-in integrity guarantees – You’ll
be warned if the data has been tampered with.

The following recommendations can also help prevent tampering with data when it is at rest in a Kubernetes
cluster:

• Restrict access to the servers that are running Kubernetes components – especially control plane
components.

• Restrict access to repositories that store Kubernetes configuration files.
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• Only perform remote bootstrapping over SSH (remember to safely guard your SSH keys).
• Always perform SHA-2 checksums on downloaded binaries.
• Restrict access to your image registry and associated repositories.

This isn’t an exhaustive list, but if you implement it, you will greatly reduce the chances of having your data
tampered with while at rest.

As well as the items listed, it’s good production hygiene to configure auditing and alerting for important binaries
and configuration files. If configured and monitored correctly, these can help detect potential tampering attacks.

The following example uses a common Linux audit daemon to audit access to the docker binary. It also audits
attempts to the change the binary’s file attributes.

auditctl -w /var/lib/docker -p rwxa -k audit-docker

We’ll refer to this example later in the chapter.

Tampering with applications running on Kubernetes

As well as infrastructure components, application components are also potential tampering targets.

A goodway to prevent a live Pod from being tamperedwith, is setting its filesystems to read-only. This guarantees
filesystem immutability and can be accomplished through a Pod Security Policy or the securityContext section
of a Pod’s manifest file.

Note: PodSecurityPolicy objects are a relatively new feature that allow us to force security settings
on all Pods in a cluster, or targeted sub-sets of Pods. They’re a great way to enforce standards
without developers and operations staff having to remember to do it for every individual Pod.

You can make a container’s root filesystem read-only by setting the readOnlyRootFilesystem property to true.
As previously mentioned, this can be set via a PodSecurityPolicy object, or in Pod manifest files. The same can
be done for other filesystems that are mounted into containers via the allowedHostPaths property.

The following example shows how to use both settings in a Pod manifest. The allowedHostPaths section makes
sure anything mounted beneath /test will be read-only.

apiVersion: v1
kind: Pod
metadata:
name: readonly-test

spec:
securityContext:
readOnlyRootFilesystem: true
allowedHostPaths:

- pathPrefix: "/test"
readOnly: true

The same can be implemented in a PodSecurityPolicy object as follows:
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apiVersion: policy/v1beta1 # Will change in future versions
kind: PodSecurityPolicy
metadata:
name: tampering-example

spec:
readOnlyRootFilesystem: true
allowedHostPaths:
- pathPrefix: "/test"
readOnly: true

Repudiation

At a very high level, repudiation is casting doubt on something. Non-repudiation is providing proof about
something. In the context of information security, non-repudiation is proving certain actions were carried out
by certain individuals.

Digging a little deeper, non-repudiation includes the ability to prove:

• What happened
• When it happened
• Who made it happen
• Where it happened
• Why it happened
• How it happened

Answering the last two usually requires the correlation of several events over a period of time.

Fortunately, auditing of Kubernetes API server events can usually help answer these questions. The following is
an example of an API server audit event (you may need to manually enable auditing on your API server).

{
"kind":"Event",
"apiVersion":"audit.k8s.io/v1",
"metadata":{ "creationTimestamp":"2019-03-03T10:10:00Z" },
"level":"Metadata",
"timestamp":"2019-03-03T10:10:00Z",
"auditID":"7e0cbccf-8d8a-4f5f-aefb-60b8af2d2ad5",
"stage":"RequestReceived",
"requestURI":"/api/v1/namespaces/default/persistentvolumeclaims",
"verb":"list",
"user": {
"username":"fname.lname@example.com",
"groups":[ "system:authenticated" ]

},
"sourceIPs":[ "123.45.67.123" ],
"objectRef": {
"resource":"persistentvolumeclaims",
"namespace":"default",
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"apiVersion":"v1"
},
"requestReceivedTimestamp":"2010-03-03T10:10:00.123456Z",
"stageTimestamp":"2019-03-03T10:10:00.123456Z"

}

Although the API server is central tomost things in Kubernetes, it’s not the only component that requires auditing
for non-repudiation. At a minimum, you should also collect audit logs from container runtimes, kubelets, and
the applications running on your cluster. This is without even mentioning network firewalls and the likes.

Once you start auditing multiple components, you quickly need a centralised location to store and correlate
events. A common way to do this is deploying an agent to all nodes via a DaemonSet. The agent collects logs
(runtime, kubelet, application…) and ships them to a secure central location.

If you do this, it’s vital that the centralised log store is secure. If the security of the central log store is compromised,
you can no longer trust the logs, and their contents can be repudiated.

To provide non-repudiation relative to tampering with binaries and configuration files, it might be useful to use
an audit daemon that watches for write actions on certain files and directories on your Kubernetes masters and
nodes. For example, earlier in the chapter we showed an example that enabled auditing of changes to the docker
binary. With this enabled, starting a new container with the docker run command will generate an event like
this:

type=SYSCALL msg=audit(1234567890.123:12345): arch=abc123 syscall=59 success=yes exit=0 a0=12345678abc\
a1=0 a2=abc12345678 a3=a items=1 ppid=1234 pid=1234 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 s\
gid=0 fsgid=0 tty=pts0 ses=1 comm="docker" exe="/var/lib/docker" subj=system_u:object_r:container_runt\
ime_exec_t:s0 key="audit-docker"
type=CWD msg=audit(1234567890.123:12345): cwd="/home/firstname"
type=PATH msg=audit(1234567890.123:12345): item=0 name="/var/lib/docker" inode=123456 dev=fd:00 mode=0\
100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:container_runtime_exec_t:s0

Audit logs like this, when combined and correlated with Kubernetes’ audit features, create a comprehensive and
trustworthy picture that cannot be repudiated.

Information Disclosure

Information disclosure is when sensitive data is leaked. There are lots of ways it can happen, from leaving an
insecure USB drive on a plane, all the way to data stores being hacked and APIs that unintentionally expose
sensitive data.

Protecting cluster data

In the Kubernetes world, the entire configuration of the cluster is stored in the cluster store (currently etcd). This
includes network and storage configuration, as well as passwords and other sensitive data stored in Secrets. For
obvious reasons, this makes the cluster store a prime target for information disclosure attacks.

As a minimum, you should limit and audit access to the nodes hosting the cluster store. As will be seen in the
next paragraph, gaining access to a cluster node can allow the logged-on user to bypass some of the security
layers.
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Kubernetes 1.7 introduced encryption of Secrets but doesn’t enable it by default. Even when this becomes default,
the data encryption key (DEK) is stored on the same node as the Secret! This means that gaining access to a node
allows you to bypass encryption. This is especially worrying on nodes that host the cluster store (etcd nodes).

Fortunately, Kubernetes 1.11 enabled a beta feature that lets you store key encryption keys (KEK) outside of the
Kubernetes cluster. These types of key are used to encrypt and decrypt data encryption keys and should be safely
guarded. You should seriously consider Hardware Security Modules (HSM) or cloud-based Key Management
Stores (KMS) for storing your key encryption keys.

Keep an eye on upcoming versions of Kubernetes for further improvements to encryption of Secrets.

Protecting data in Pods

As previously mentioned, Kubernetes has an API resource called a Secret that is the preferred way to store and
share sensitive data such as passwords. For example, a front-end container accessing an encrypted back-end
database can have the key to decrypt the database mounted as a Secret. This is a far better solution than storing
the decryption key in a plain-text file or environment variable.

It is also common to store data and configuration information outside of Pods and containers in Persistent
Volumes and ConfigMaps. If the data on these is encrypted, keys for decrypting them should also be stored
in Secrets.

With all of this, it’s vital that you consider the caveats outlined in the previous section relative to Secrets and
how their encryption keys are stored. You don’t want to do the hard work of locking the house but leaving the
keys in the door.

Denial of Service

Denial of Service (DoS) is all about making something unavailable. There are many types of DoS attack, but a
well-known variation is overloading a system to the point it can no longer service requests. In the Kubernetes
world, a potential attack might be to overload the API server so that cluster operations grind to a halt (even
essential system services have to communicate via the API server).

Let’s take a look ot some potential Kubernetes systems that might be targets of DoS attacks, and some ways to
protect and mitigate.

Protecting cluster resources against DoS attacks

It’s a time-honored best practice to replicate essential control plane services onmultiple nodes for high availability
(HA). Kubernetes is no different, and you should run multiple master nodes in an HA configuration for your
production environments. Doing this will prevent a single master from becoming a single point of failure. In
relation to certain types of DoS attacks, an attacker would potentially need to attack more than one master to
have a meaningful impact.

You should also consider replicating control plane nodes across availability zones. This may prevent a DoS attack
on the network of a particular availability zone from taking down your entire control plane.

The same principle applies to worker nodes. Having multiple worker nodes allows the scheduler to spread your
application over multiple nodes and availability zones. Not only might this allow the scheduler to run your
application on a different node if the one it’s currently running on is subject to a DoS attack. It also means that
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replicated parts of your application can be distributed over multiple nodes and zones, potentially rendering a
DoS attack on any single node or zone ineffective (or less effective).

You should also configure appropriate limits for the following:

• Memory
• CPU
• Storage
• Kubernetes objects

Limiting Kubernetes objects includes things like; limiting the number of ReplicaSets, Pods, Services, Secrets, and
ConfigMaps in a particular Namespace.

Placing limits on things can help prevent important system resources from being starved, therefore preventing
potential DoS.

Here’s an example manifest that limits the number of Pod objects in the skippy namespace to 100.

apiVersion: v1
kind: ResourceQuota
metadata:
name: pod-quota

spec:
hard:
pods: "100"

Use the following command to apply it to the skippy namespace. The command assumes the manifest file is
called quota.yml.

$ kubectl apply -f quota.yml --namespace=skippy

Protecting the API Server against DoS attacks

All communication in Kubernetes goes through the API server. The API server exposes a RESTful interface over
a TCP socket, making it susceptible to botnet-based DoS attacks.

The following may be helpful in either preventing or mitigating such attacks.

• Highly available masters. Having multiple API server replicas running on multiple nodes across multiple
availability zones.

• Monitoring and alerting of API server requests (based on sane thresholds)
• Not exposing the API server to the internet (firewall rules etc.)

As well as botnet DoS attacks, an attacker may also attempt to spoof a user or other control plane service in an
attempt to cause an overload. Fortunately, Kubernetes has robust authentication and authorization controls in
place to help prevent spoofing. However, even with a robust RBAC model, it is vital that you safeguard access to
accounts with high privileges.
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Protecting the cluster store against DoS attacks

Cluster configuration is stored in etcd, making it vital that etcd be available and secure. The following
recommendations will help accomplish this:

• Configure an HA etcd cluster with either 3 or 5 nodes
• Configure monitoring and alerting of requests to etcd
• Isolate etcd at the network level so that only members of the control plane can interact with it

A default installation of Kubernetes will install etcd on the same servers as the rest of the control plane. This is
usually fine for development and testing; however, large production clusters should seriously consider a dedicated
etcd cluster. This will provide better performance and greater resilience.

On the performance front, etcd is probably the most common choking point for large Kubernetes clusters.
With this in mind, you should perform testing to ensure the infrastructure it runs on is capable of sustaining
performance at scale – a poorly performing etcd can be as bad as an etcd cluster under a sustained DoS attack.
Operating a dedicated etcd cluster also provides additional resilience by protecting it from other parts of the
control plane that might be compromised.

Monitoring and alerting of etcd should be based on sane thresholds, and a good place to start is by monitoring
etcd log entries.

Protecting application components against DoS attacks

Most Pods expose their main service on the network, and without additional controls in place, anyone with access
to the network can perform a DoS attack on the Pod. Fortunately, Kubernetes provides Pod resource request limits
to prevent such attacks from exhausting Pod and node resources. As well as these, the following will be helpful:

• Define Kubernetes Network Policies that restrict Pod-to-Pod and Pod-to-external communications
• Utilize mutual TLS and API token-based authentication for application-level authentication (reject any
unauthenticated requests)

For defence in depth, you should also implement application-layer authorization policies that implement least
privilege.

Figure 9.1 shows how all of these can be combined to make it hard for an attacker to successfully DoS an
application.
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Figure 9.1

Elevation of privilege

Elevation of privilege, a.k.a privilege escalation, is gaining higher access than what is granted, usually in order
to cause damage or gain unauthorized access.

Let’s look at a few ways to prevent this in a Kubernetes environment.

Protecting the API server

Kubernetes offers several authorization modes that help safeguard access to the API server. These include:

• Role-based Access Control (RBAC)
• Webhook
• Node

You should run multiple authorizers at the same time. For example, a common best practice is to always have
RBAC and node enabled.

RBAC mode lets us restrict API operations to sub-sets of users. These users can be regular user accounts as
well as system services. The idea is that all requests to the API server must be authenticated and authorized.
Authentication ensures that requests are coming from a validated user – the user performing the request is who
they claim to be. Authorization ensures the validated user is allowed to perform the requested operation on
the targeted cluster resource. For example, can Lily create Pods? In this example, Lily is the user, create is the
operation, and Pods is the resource. Authentication makes sure that it really is Lily making the request, and
authorization determines if she’s allowed to create Pods.

Webhook mode lets you offload authorization to an external REST-based policy engine. However, it requires
additional effort to build and maintain the external engine. It also makes the external engine a potential single-
point-of-failure for every request to the API server. For example, if the external webhook system becomes
unavailable, you may not be able to make any requests to the API server. With this in mind, you should be
rigorous in vetting and implementing any webhook authorization service.
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Node authorization is all about authorizing API requests made by kubelets (cluster nodes). The types of requests
made to the API server by nodes is obviously different to those generally made by regular users, and the node
authorizer is designed to help with this.

RBAC and node are two recommended authorization modes. RBAC mode is extremely configurable, and you
should use it to implement a least privilege model for users accessing the API server. When implemented, it is
a deny-by-default system that requires you to specifically grant individual permissions. If implemented well, it
does an excellent job of ensuring users and Service Accounts do not have more access than required.

Protecting Pods

The next few sections will look at a few of the technologies that help reduce the risk of elevation of privilege
attacks against Pods and containers. We’ll look at the following:

• Preventing processes from running as root
• Dropping capabilities
• Filtering syscalls
• Preventing privilege escalation

As we proceed through the following sections, it’s important to remember that a Pod is just an execution
environment for one or more containers – application code runs in containers, which in turn, run inside of
Pods. Some of the terminology used will refer to Pods and containers interchangeably, but usually we will mean
container.

Do not run processes as root

The root user is the most powerful user on a Linux system and is always User ID 0 (UID 0). Therefore, running
application processes as root is almost always a bad idea as it grants the application process full access to the
container. This is made even worse by the fact that the root user of container often has unrestricted root access
on the node as well. If that doesn’t make you afraid, it should!

Fortunately, Kubernetes lets us force container processes to run as unprivileged non-root users.

The following Pod manifest configures all containers that are part of this Pod to run processes as UID 1000. If
the Pod has multiple containers, all processes in all containers will run as UID 1000

apiVersion: v1
kind: Pod
metadata:
name: demo

spec:
securityContext: # Applies to all containers in this Pod
runAsUser: 1000 # Non-root user

containers:
- name: demo
image: example.io/simple:1.0
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runAsUser is one of many settings that can be configured as part of what we refer to as a PodSecurityContext
(.spec.securityContext).

It is possible for two or more Pods to be configured with the same runAsUser UID. When this happens, the
containers from both Pods will run with the same security context and potentially have access to the same
resources. Thismight be fine if they are replicas of the same Pod or container. However, there is a high chance that
this will cause problems if they are different containers. For example, two different containers with R/W access
to the same host directory can cause data corruption (both writing to the same dataset without co-ordinating
write operations). Shared security contexts also increase the possibility of a compromised container tampering
with a dataset it should not have access to.

With this in mind, it is possible to use the securityContext.runAsUser property at the container level instead
of at the Pod level:

apiVersion: v1
kind: Pod
metadata:
name: demo

spec:
securityContext: # Applies to all containers in this Pod
runAsUser: 1000 # Non-root user

containers:
- name: demo
image: example.io/simple:1.0
securityContext:

runAsUser: 2000 # Overrides the Pod setting

This example sets the UID to 1000 at the Pod level but overrides it at the container level so that processes in one
particular container run as UID 2000. Unless otherwise specified, all other containers in the Pod will use UID
1000.

A couple of other things that might help get around the issue of multiple Pods and containers using the same
UID include:

• Enabling user namespaces
• Maintaining a map of UID usage

User namespaces is a Linux kernel technology that allows a process to run as root within a container but run as
a different user outside of the container. For example, UID 0 (the root user) in the container gets mapped to UID
1000 on the host. This can be a good solution for processes that need to run as root inside the container, but you
should check whether it has full support from your version of Kubernetes and your container runtime.

Maintaining a map of UID usage is a clunky way to prevent multiple different Pods and containers using
overlapping UIDs. It’s a bit of a hack and requires strict adherence to a gated release process for releasing Pods
into production.

Note: A strict gated release process is a good thing for production environments. The hacky part
of the previous section is the UID map itself, as well as the fact that you’re introducing an external
dependency and complicating releases and troubleshooting.
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Drop capabilities

While user namespaces allow container processes to run as root inside the container but not on the host machine,
it remains a fact that most processes do not need all of the privileges that the root has. However, it is equally
true that many processes do require more privileges than a typical non-root user has. What we need, is a way to
grant the exact set of privileges a process requires in order to run. Enter capabilities.

Time for a quick bit of background…

We’ve already said that the root user is the most powerful user on a Linux system. However, its power is a
combination of lots of small privileges that we call capabilities. For example, the SYS_TIME capability allows a user
to set the system clock, whereas the NET_ADMIN capability allows a user to perform network-related operations
such as modifying the local routing table and configuring local interfaces. The root user holds every capability
and is therefore extremely powerful.

Having a modular set of capabilities like this allows us to be extremely granular when granting permissions.
Instead of an all or nothing (root or non-root) approach, we can grant a process the exact set of privileges it
requires to run.

There are currently over 30 capabilities and choosing the right ones can be daunting. With this in mind, an out-
of-the-box Docker runtime drops over half of them by default. This is a sensible-default that is designed to allow
most processes to run, without leaving the keys in the front door. While sensible defaults like these are better
than nothing, they will usually not be enough for a lot of production environments.

A common way to find the absolute minimum set of capabilities an application requires, is to run it in a test
environment with all capabilities dropped. This will cause the application to fail and log messages about the
missing permissions. You map those permissions to capabilities, add them to the application’s Pod spec, and run
the application again. You rinse and repeat this process until the application runs properly with the minimum
set of capabilities.

As good as this is, there are a few things to consider.

Firstly, you must perform extensive testing of your application. The last thing you want is a production edge
case that you hadn’t accounted for in your test environment. Such occurrences can crash your application in
production!

Secondly, every fix and change to your application requires the exact same extensive testing against the capability
set.

With these considerations in mind, it is vital that you have testing procedures and production release processes
that can handle all of this.

By default, Kubernetes implements the default set of capabilities implemented by your chosen container runtime
(E.g. containerd or Docker). However, you can override this in a Pod Security Policy, or as part of a container’s
securityContext field.

The following Pod manifest shows how to add the NET_ADMIN and CHOWN capabilities to a container.
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apiVersion: v1
kind: Pod
metadata:
name: capability-test

spec:
containers:
- name: demo
image: example.io/simple:1.0
securityContext:

capabilities:
add: ["NET_ADMIN", "CHOWN"]

Filter syscalls

seccomp is similar in concept to capabilities but works on syscalls rather than capabilities.

The way that Linux processes ask the kernel to perform an operation is by issuing a syscall to the kernel. seccomp
lets us configure which syscalls a particular container can make to the host kernel. As with capabilities, a least
privilege model is preferred where the only syscalls a container is allowed to make are the ones it needs to in
order to run.

Be careful though, Linux has over 300 syscalls, and at the time of writing seccomp is an alpha feature in
Kubernetes. You should also check support from your container runtime.

Prevent privilege escalation by containers

The only way to create a new process in Linux is for one process to clone itself and then load new instructions
on to the new process. We’re obviously over-simplifying, but the original process is called the parent process,
and the copy is called the child.

By default, Linux allows a child process to claim more privileges than its parent. This is usually a bad idea. In
fact, you will often want a child process to have the same, or less privileges than its parent. This is especially
true for containers, as their security configurations are defined against their initial configuration, and not against
potentially escalated privileges.

Fortunately, it’s possible to prevent privilege escalation through a Pod Security Policy or the securityContext
property of an individual container.

The following Pod manifest shows how to prevent privilege escalation for an individual container.

apiVersion: v1
kind: Pod
metadata:
name: demo

spec:
containers:
- name: demo
image: example.io/simple:1.0
securityContext:

allowPrivilegeEscalation: false
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Pod Security Policies

As we’ve seen throughout the chapter, we can enable security settings on a per-Pod basis by setting security
context attributes in individual Pod YAML files. However, this approach doesn’t scale, requires developers and
operators to remember to do this for every Pod, and is prone to errors. Pod Security Policies offer a better way.

Pod Security Policies are a relatively new feature that allow us to define security settings at the cluster level.
We can then apply these to targeted sets of Pods as part of the deployment process. As such, this solution scales
better, requires less work from developers and admins, and is less prone to error. It also lends itself to situations
where you have a team dedicated to securing apps in production.

Pod Security Policies are implemented as an admission controller, and in order to use them, a Pod’s serviceAc-
count must be authorized to use it. Once this is done, their policies are applied to new requests to create Pods as
they pass through the API admission chain.

Pod Security Policy example

Let’s finish the chapter with a quick look at an example of a Pod Security Policy that covers many of the points
discussed in this chapter, as well as some other known secure defaults.

The example is based on an example from the official Kubernetes docs¹:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: restricted
annotations:
seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default'
apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
seccomp.security.alpha.kubernetes.io/defaultProfileName: 'docker/default'
apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'

spec:
privileged: false
allowPrivilegeEscalation: false # Prevent privilege escalation
requiredDropCapabilities:
- ALL # Drops all root capabilities (non-privileged user)

# Allow core volume types.
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
- 'downwardAPI'
# Assume that PVs set up by the cluster admin are safe to use.
- 'persistentVolumeClaim'

hostNetwork: false # Prevent access to the host network namespace
hostIPC: false # Prevent access to the host IPC namespce
hostPID: false # Prevent access to the host PID namespace
runAsUser:

¹https://kubernetes.io/docs/concepts/policy/pod-security-policy/#example-policies

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#example-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#example-policies
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rule: 'MustRunAsNonRoot' # Prevent from running as root
seLinux:
rule: 'RunAsAny' # Any SELinux options can be used

supplementalGroups:
rule: 'MustRunAs' # Allow all except root (UID 0)
ranges:

- min: 1
max: 65535

fsGroup:
rule: 'MustRunAs' # Sets range for groups that own Pod volumes
ranges:

- min: 1
max: 65535

readOnlyRootFilesystem: true # Force root filesystem to be R/O

There’s no denying that configuring effective security policies is both important and challenging. A common
practice is to start with a restrictive policy like the one just shown, then tweak it to fit your requirements. A lot
of experimenting will be required.

It may also be a good idea to configure several Pod Security Policies that vary in how restrictive they are, then
allow development teams to work with cluster administrators to choose the one that best fits the application.

Chapter summary

In this chapter, we used STRIDE to threat model Kubernetes. We stepped through the six categories of threat and
looked at some ways to prevent and mitigate them.

We saw that one threat can often lead to another, and that there are multiple ways to mitigate a single threat. As
always, defence in depth is a key tactic.

We finished the chapter by discussing how Pod Security Policies provide a flexible and scalable way to implement
Pod security defaults.

In the next chapter, we’ll see some best practices and lessons learned from running Kubernetes in production.
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In the previous chapter, we threat modeled Kubernetes using STRIDE. In this chapter, we’ll cover some common
security-related challenges that you’re likely to encounter when implementing Kubernetes in the real world.

While we accept that every Kubernetes deployment is different, there are many similarities. As a result, the
examples that we cover will affect most Kubernetes deployments, large and small.

Now then, we won’t be offering cookbook style solutions. Instead, we’ll be looking at things from a high-level
view, similar to what a security architect has.

We’ll divide the chapter into the following four sections:

• CI/CD pipeline
• Infrastructure and networking
• Identity and access management
• Security monitoring and auditing

CI/CD pipeline

Containers are a revolutionary application packaging and runtime technology.

On the packaging front, we conveniently bundle application code and dependencies into an image. As well as
code and dependencies, the image contains the commands required to run the application. This has allowed
containers to hugely simplify the process of building, shipping, and running applications. It has also overcome
the infamous “it worked on my laptop” issue.

However, containers also make running dangerous code easier than ever before.

With this in mind, let’s look at some ways we can secure the flow of application code from a developer’s laptop
to production servers.

Image Repositories

We store images in registries, and registries are either public or private.

Note: Each registry is divided into one or more repositories, and we actually store images in
repositories.

Public registries are on the internet and are the easiest way to download images and run containers. However,
it’s important to understand that they host a mixture of official images and community images. Official images
are usually provided by product vendors and have undergone a vetting process to ensure certain levels of quality.
Typically, official images will; implement best practices, be scanned for known vulnerabilities, contain up-to-date
code, and be supported by the product vendor. Community images are none of that. Yes, there are some excellent
community images, but you should practice extreme caution when using them.
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With all of this in mind, it’s important that you implement a standard way for developers to obtain and consume
images in your environments. It’s also vital that any such process be as frictionless as possible for developers –
if there’s too much friction, your developers will look for ways to bypass them.

Let’s discuss a few things that might help.

Use approved base images

Images are made up of multiple layers that build on top of each other to form a useful image. But all images start
with a base layer.

Figure 10.1 shows a simple example of an image comprising three layers. The base layer contains the core OS and
filesystem components that applications need in order to run. The middle layer contains the application library
dependencies. The top layer contains the code that your developers have written. We call the combination of
these layers an image, and it contains everything needed to run the application.

Figure 10.1

As all images have a base layer containing the required operating system (OS) and filesystem constructs for
applications to build on, it’s a common practice for organizations to have a small number of approved base
images. It’s also common, but not essential, for these base images to be derived from official images. For example,
if you develop your applications on CentOS Linux, your base imagesmay be based on the official CentOS image
– you take the official CentOS base image and tweak it for your requirements.

In this model, all of your applications will build on top of a common approved base image like shown in Figure
10.2.

Figure 10.2

While there is some up-front effort required to create and implement base images, the long-term security benefits
are worth it.

From a developer perspective, they can focus their entire efforts on the application and its dependencies without
having to worry about maintaining OS components – don’t worry about patching, drivers, audit settings, and
more.
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From an operations perspective, base images reduce software sprawl. This makes testing easier, as youwill always
be testing on a known base image. It makes pushing updates easier, you only need to update a small number of
approved base images and have these easily rolled out to all developers. It also makes troubleshooting easier,
as you have a small number of well-known base images providing your building blocks. It may also reduce the
number of base image configurations that need tying into support contracts.

Non-standard base images

As good as it is to have a small number of approved base images, there may still be occasions when an application
needs something different. This means you will need processes in place that:

• Identify why an existing approved base image cannot be used
• Determine whether an existing approved base image can be updated to meet requirements (including if
it is worth the effort)

• Determine the support implications of bringing an entirely new image into the environment

Generally speaking, updating an existing base image – such as adding a device driver for GPU computing –
should be preferred over introducing an entirely new image.

Control access to images

Various options exist that allow you to protect your organization’s container images. The most secure practical
option is to host your own private registry within your own firewall. This allows your organization to manage
how the registry is deployed, how it is replicated, and how it is patched. It also integrates permissions with
existing identity management providers, such as Active Directory, and allows you to create repositories that fit
your organizational structure.

If you do not have the means for a dedicated private registry, you can host your images in private repositories on
public registries such as Docker Hub. However, this is not as secure as hosting your own private registry within
your own firewalled network.

Whichever solution you choose, you should only host images that are approved to be used within your
organization. Normally, these will be from a trusted source and vetted by your information security team. You
should place access controls on the repositories that store these images, so that only approved users can push and
pull them.

Away from the registry itself, you should also:

• Restrict which cluster nodes have internet access, keeping in mind that your image registry may be on
the internet

• Configure access controls that only allow authorized users/nodes can push to repositories

Expanding on the list above…

If you are using a public registry, you will probably need to grant your worker nodes access to the internet so
they can pull images. In this situation, a best practice is to limit internet access to the addresses and ports of any
registries you use. You should also implement strong RBAC rules so that you can maintain control over who is
pushing and pulling images from which repositories. For example, developers should probably be able to push
and pull from non-production repositories, but not production. Whereas operations teams should probably be
able to pull from non-production, as well as push and pull to production repos.

Finally, you may only want a sub-set of nodes (build nodes) to be able to push images. You may even wish to
lock things down so that only your automated build systems can push to certain repositories.
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Moving images from non-production to production

Many organizations have separate environments for development, testing, and production.

Generally speaking, development environments have less rules and are commonly used as places where
developers can experiment. Such experimenting often involves using non-standard images that your developers
eventually want to use in production.

The following sub-sections will outline some measures you can take to ensure only safe images get approved into
production.

Vulnerability scanning

Top of the list for vetting images before allowing them into production should be vulnerability scanning. This
is a process where your images are scanned at a binary level and their contents checked against a database of
known security vulnerabilities.

If your organization has an automated CI/CD build pipeline, you should definitely integrate vulnerability
scanning. As part of this, you should consider defining policies that automatically fail builds and quarantine
images containing certain categories of vulnerabilities. For example, you might implement a build phase that
scans images and automatically fails anything using images with known critical vulnerabilities.

Two things to keep in mind if you do this…

Firstly, scanning engines are only as good as the vulnerability databases they use.

Secondly, scanning engines might not implement intelligence. For example, a method in Python that performs
TLS verification might be vulnerable to Denial of Service attacks when the Common Name contains a lot of
wildcards. However, if you never use Python in this way, the vulnerabilitymight not be relevant and you might
want to consider it a false positive. With this in mind, you may want to implement a solution that provides the
ability to mark certain vulnerabilities as not applicable.

Configuration as code

Scanning application code for vulnerabilities is a widely adopted production best practice. However, reviewing
application configurations, such as Dockerfiles and Kubernetes YAML files, is less widely adopted.

The build once, run anywhere mantra of containers means that a single container or Pod configuration can have
hundreds or thousands of running instances. If a single one of these configurations pulls in vulnerable code, you
can easily end up running hundreds or thousands of instances of vulnerable code. With this in mind, if you are
not already reviewing your Dockerfiles and Kubernetes YAML files for security issues, you should start now!

A well-publicised example of not reviewing configurations was when an IBM data science experiment embedded
private TLS keys in its container images. This made it possible for an attacker to pull the image and gain root
access to the nodes that were hosting the containers. This would not have happened if a security review had been
performed against the application’s Dockerfiles.

There continue to be advancements in automating these types of checks with tools that implement policy as code
rules.
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Sign container images

Trust is a big deal in today’s world, and cryptographically signing content at every stage in the software delivery
pipeline is becoming a must have. Fortunately, Kubernetes, and many container runtimes, support the ability to
cryptographically sign and verify images.

In this model, developers cryptographically sign their images, and consumers cryptographically verify them
when they pull and run them. This process gives the consumer confidence that the image they are working with
is the image they asked for and has not been tampered with.

Figure 10.3 shows the high-level image signing and verification process.

Figure 10.3

Image signing, and verification of signatures is usually implemented by the container runtime and Kubernetes
does not get actively involved.

As well as signing images like this, higher-level tools, such as Docker Universal Control Plane, allow you to
implement enterprise-wide policies that require certain teams to sign images before allowing them to be used.

Image promotion workflow

With everything that we’ve covered so far, a CI/CD pipeline for promoting an image to production should include
as many of the following security-related steps as possible:

1. Configure environment to only pull and run signed images
2. Configure network rules to restrict which nodes can push and pull images
3. Configure repositories with RBAC rules
4. Developers build images using approved base images
5. Developers sign images and push to approved repos
6. Images are scanned for known vulnerabilities

• Policies dictate whether images are promoted or quarantined based on scan results
7. Security team:

• Reviews source code and scan results
• Updates vulnerability rating as appropriate
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• Reviews container and Pod configuration files
8. Security team signs the image
9. All image pull and container run operations verify image signatures

These steps are examples and not intended to represent an exact workflow.

Let’s switch our focus away from images and CI/CD pipelines.

Infrastructure and networking

In this section, we’ll look at some of the ways we can isolate workloads.

We’ll start at the cluster level, switch to the runtime level, and then look outside of the cluster at supporting
infrastructure such as network firewalls.

Cluster-level workload isolation

Cutting straight to the chase, Kubernetes does not support secure multi-tenant clusters. The only cluster-
level security boundary in Kubernetes is the cluster itself.

Let’s look a bit closer…

The only way to divide a Kubernetes cluster is by creating namespaces. A Kubernetes namespace is not the same
as a Linux kernel namespace, it is a logical partition of a single Kubernetes cluster. In fact, it’s little more than a
way of grouping resources and applying things like:

• Limits
• Quotas
• RBAC rules
• More…

The take-home point is that Kubernetes namespaces cannot guarantee a Pod in one namespace will not impact a
Pod in another namespace. As a result, you should not run potentially hostile production workloads on the same
physical cluster. The only way to run potentially hostile workloads, and guarantee true isolation, is to run them
on separate clusters.

Despite this, Kubernetes namespaces are useful, and you should use them – just don’t use them as security
boundaries.

Let’s look at how namespaces relate to soft multi-tenancy and hard multi-tenancy.

Namespaces and soft multi-tenancy

For our purposes, we’ll define soft multi-tenancy as hosting multiple trusted workloads on shared infrastructure.
By trusted, we mean workloads that do not require absolute guarantees that one Pod/container cannot impact
another.

An example of two trusted workloads might be an e-commerce application with a web front-end service and a
back-end recommendation service. Both services are part of the same e-commerce application, so are not hostile,
but they might benefit from:
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• Isolating the teams responsible for the different services
• Having different resource limits and quotas for each service

In this situation, a single cluster with one namespace for the front-end service and another for the back-end
service might be a good solution. However, exploiting a vulnerability in one service might give the attacker
access to Pods in the other service.

Namespaces and hard multi-tenancy

Let’s define hard multi-tenancy as hosting untrusted and potentially hostile workloads on shared infrastructure.
Only… as we said before, this isn’t currently possible with Kubernetes.

This means that truly hostile workloads – workloads that require a strong security boundary – need to run on
separate Kubernetes clusters! Examples include:

• Isolating production and non-production workloads on dedicated clusters
• Isolating different customers on dedicated clusters
• Isolating sensitive projects and business functions on separate clusters

Other examples exist, but you get the picture. If you have workloads that require strong separation, put them on
their own clusters.

Note: The Kubernetes project has a dedicated Multitenancy Working Group that is actively
working on the multitenancy models that Kubernetes supports. This means that future releases
of Kubernetes might support hard multitenancy.

Node isolation

There are timeswhen individual applications require non-standard privileges such as running as root or executing
non-standard syscalls. Isolating these on their own clusters might be overkill, but the increased risk of collateral
damage would probably justify running them on a ring-fenced subset of worker nodes. In this case, if one Pod is
compromised it can only impact other Pods on the same node.

You should also apply defence in depth principles by enabling stricter audit logging and tighter runtime defence
options on nodes running workloads with non-standard privileges.

Kubernetes offers several technologies, such as labels, affinity and anti-affinity rules, and taints, to help target
workloads to sub-sets of nodes.

Runtime isolation

So far, we’ve looked at cluster-level isolation and node-level isolation. Now let’s turn our attention to the various
types of runtime isolation.

Containers versus virtual machines can be a polarizing topic. However, when it comes to workload isolation
there is only one winner… the virtual machine!

The typical container model has multiple containers sharing a single kernel, and isolation is provided by kernel
constructs that were never designed as strong security boundaries. We often call these namespaced containers.
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In the hypervisor model, every virtual machine gets its own dedicated kernel and is strongly isolated from other
virtual machines using hardware enforcement.

From a workload isolation perspective, virtual machines win.

However, it is becoming easier and more common to augment containers with additional kernel-level isolation
technologies such as apparmor and SELinux, seccomp, capabilities, and user namespaces. Unfortunately, these
can add significantly to the complexity of the setup and are still considered less secure than a virtual machine.

Another thing to consider is different classes of container runtime. Two prominent examples are gVisor and
Kata Containers, both of which are re-writing the rules and providing stronger levels of workload isolation.
Integrating runtimes like these with Kubernetes is made simple thanks to Kubernetes supporting the Container
Runtime Interface (CRI) and Runtime Classes.

There are also projects that enable Kubernetes to orchestrate other workloads such as virtual machines and
functions.

While all of this might feel overwhelming, everything discussed here needs to be considered when deciding what
levels of isolation your workloads require.

To summarize, the following workload isolation options exist:

1. Virtual Machines: Every workload gets its own virtual machine and kernel. This provides excellent
isolation but is relatively slow and heavy-weight.

2. Traditional namespaced containers: Every workload gets its own container but shares a common kernel.
Not the best isolation, but fast and light-weight.

3. Run every container in its own virtual machine: This option attempts to combine the versatility of
containers with the security of VMs by running every container in its own dedicated VM. Despite using
specialized lightweight VMs this loses some of the appeal of containers and is not a popular solution.

4. Use appropriate runtime classes: This is extremely new but has a lot of potential. All workloads can run
as containers, but workloads requiring stronger isolation are targeted to a class of container runtime that
provides appropriate isolation (gVisor, Kata Containers etc.). Runtime classes is currently an alpha feature
in Kubernetes.

A couple of other security-related things to consider…

Running lots of virtual machines can complicate things when it’s time to patch operating systems. Also, running
a mix of containers and virtual machines can increase network complexity.

Network isolation

On the topic of networking, firewalls are an integral part of any layered information security system. At a high
level, they implement a set of rules that either allow or deny system-to-system communication.

As the names suggest, allow rules permit traffic to flow, whereas deny rules stop traffic flowing. The overall
intent is to lock things down so that only authorized communications occur.

In Kubernetes, Pods communicate with each other over a special internal network called the Pod network.
However, Kubernetes does not implement this Pod network, instead, it implements a plugin model called the
Container Network Interface (CNI). Vendors and the community are responsible for writing the CNI plugins
that actually provide the Pod network. Fortunately, there are lots of plugins available, and the networking options
they support fall into the following two categories:
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• Overlay
• BGP

Each of these is different, and each has a different impact on firewall implementation. Let’s take a quick look at
each.

Kubernetes and overlay networking

The most common way to build the Pod network is as an overlay network. In the Kubernetes world, overlay
networking allows us to build a simple flat Pod network that hides any complexity that might exist between the
nodes in the cluster. For example, you might have your cluster deployed across two different networks but have
all Pods on a single flat Pod network. In this scenario, the Pods only know about the flat overlay Pod network
and have no knowledge of the networks that the nodes are on. Figure 10.4 shows four nodes on two different
networks, with Pods connected to a single overlay Pod network.

Figure 10.4

Generally speaking, overlay networks encapsulate packets for transmission over VXLAN tunnels. In this model,
the overlay network is a virtual Layer 2 network operating on top of existing Layer 3 infrastructure. Traffic is
encapsulated in order to pass between Pods on different nodes. This simplifies implementation, but encapsulation
poses challenges for some firewalls. See Figure 10.5

Figure 10.5

Kubernetes and BGP

BGP is the protocol that powers the internet. However, at its core it’s a simple and scalable protocol that creates
peer relationships that are used to share routes and perform routing.
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The following analogy might help if you’re new to BGP. Imagine you want to send a birthday card to a friend
who you lost contact with and no longer have their address. However, your child has a friend at school whose
parents are still in touch with your old friend. In this situation, you give the card to your child and ask them to
give it to their friend at school. This friend gives it to their parents who deliver it to your friend.

This is similar to BGP. BGP Routing happens through a network of peers that help each other find a route for
packets to go from one Pod to another.

BGP does not encapsulate packets, making life easier for firewalls. See Figure 10.6.

Figure 10.6

How this impacts firewalls

We’ve already defined a firewall as a network entity that allows or disallows traffic-flow based on source and
destination addresses. For example:

• Allow traffic from the 10.0.0.0/24 network
• Disallow traffic from the 192.168.0.0/24 network

If your Pod network is an overlay network, source and destination Pod IP addresses are encapsulated so they can
traverse the underlay network. This means firewalls that do not crack open packets and inspect their contents
will not be able to filter based on Pod source and Pod destination IPs. You should consider this when choosing
your Pod network and your firewall solutions.

With this in mind, if your Pod-to-Pod traffic has to traverse existing firewalls that do not perform deep packet
inspection, it might be a better idea to choose a BGP-based Pod network. This is because BGP does not obscure
Pod source and destination addresses.

You should also consider whether to deploy physical firewalls, host-based firewalls, or a combination of both.

Physical firewalls are dedicated network hardware devices that are usually managed by a central team. Host-
based firewalls are operating systems (OS) features and are usually managed by the team that manages your
OS. For example, the Linux sysadmins. Both solutions have their pros and cons, and a combination of the two is
probably the most secure. However, you should consider things such as; whether your organization has a long
and protracted procedure for implementing changes to physical firewalls. If it does, it might not suit the nature
of your Kubernetes deployment and a different firewall solution might be preferable.
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Packet capture

On the topic of networking and IP addresses, not only are Pod/container IP addresses sometimes obscured by
encapsulation, they are also dynamic.

Pods and containers are designed to be ephemeral, meaning they are not long lived. Scaling part of an application
up adds more Pods and more IP addresses, whereas scaling it down removes Pods and IP addresses. IP addresses
can even be recycled and re-used by different Pods and containers. This causes a lot of IP churn and reduces
how useful IP addresses are in identifying systems and workloads. With this in mind, the ability to associate
IP addresses with Kubernetes-specific identifiers such as; Pod IDs, Service aliases, and container IDs when
performing things like packet capturing is extremely useful.

Let’s switch tack and look at some ways of controlling user access to Kubernetes.

Identity and access management (IAM)

Controlling user access to Kubernetes is important in any production environment. Fortunately, Kubernetes has
a robust RBAC subsystem that integrates with existing IAM providers such as Active Directory and other LDAP
systems.

Most organizations already have a centralized IAM provider, such as Active Directory, that is integrated with
company HR systems to simplify employee lifecycle management.

Fortunately, Kubernetes leverages existing IAM providers instead of implementing its own. For example, a new
employee joining the company will automatically get an identity in Active Directory, which integrates with
Kubernetes RBAC to automatically grant that user certain access to Kubernetes. Likewise, an employee leaving
the company will automatically have his or her Active Directory identity removed or disabled, resulting in their
access to Kubernetes being revoked.

RBAC went GA in Kubernetes 1.8 and it is highly recommended that you leverage its full capabilities.

Managing Remote SSH access to cluster nodes

Almost all Kubernetes administration is done via the API server, meaning it should be rare for a user to require
remote SSH access to Kubernetes cluster nodes. In fact, remote SSH access to cluster nodes should only be for
the following types of reason:

• Performing node management activities that cannot be performed via the Kubernetes API
• Break the Glass activities such as when the API server is down
• Deep troubleshooting

You should probably have tighter controls over who has remote access to the control plane nodes.

Multi-factor authentication (MFA)

With great power comes great responsibility…

Accounts with administrator access to the API server, and root access to cluster nodes, are extremely powerful
and are prime targets for attackers and disgruntled employees. As such, their use should be protected by multi-
factor authentication (MFA) where possible. This is where a user has to input a username and password followed
by a second stage of authentication. For example:



10: Real-world Kubernetes security 134

• Stage 1: Tests knowledge of a username and password
• Stage 2: Tests possession of something like a one-time password device

Or…

• Stage 1: Tests knowledge of a username and password
• Stage 2: Tests something about the user, such as fingerprint or facial recognition

An easy, and important, place to implement multi-factor authentication is remote SSH access to cluster nodes.
You should also consider it for access to workstations and user profiles that have kubectl installed.

Auditing and security monitoring

No system is 100% secure, and you should plan for the eventuality that your systems will be breached. When
breaches happen, it is vital that you can do at least two things:

1. Recognize that a breach has occurred
2. Build a detailed timeline of events that cannot be repudiated

Auditing is key to both of these requirements, and the ability to build a reliable timeline helps answer the
following post-event questions; what happened, how did it happen, when did it happen and who did it… In
extreme circumstances, information like this can even be called upon in court.

Good auditing and monitoring solutions also help to identify vulnerabilities in your security systems.

With these points in mind, you should ensure that reliable auditing and monitoring is high on your list of
priorities, and you should not go live in production without them.

Secure Configuration

There are various tools and checks that can be useful in ensuring your Kubernetes environment is provisioned
according to best practices and in-line with company policies.

The Center for Information Security (CIS) has published an industry standard benchmark for Kubernetes security,
and Aqua Security (aquasec.com) has written an easy-to-use tool called kube-bench to implement the CIS tests.
In its most basic form, you run kube-bench against each node in your cluster and get a report outlining which
tests passed and which failed.

Many organizations consider it a best practice to run kube-bench on all production nodes as part of the node
provisioning process. Then, depending on your risk appetite, you can pass or fail provisioning tasks based on the
results.

kube-bench reports can also serve as a valuable baseline in the aftermath of an incident. In situations like this,
you run an additional kube-bench after a breach and compare the results with the initial baseline to determine
if and where the configuration has changed.
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Container and Pod lifecycle Events

As previously mentioned, Pods and containers are ephemeral in nature, meaning they don’t live for long –
certainly not as long as VMs and physical servers. This means you will see a lot of events announcing new Pods
and containers, as well as a lot of events announcing terminated Pods and containers. It also means you may
need a solution that stores container logs in an external system and keeps them around for a while after their
Pods and containers have terminated. If you don’t, you may find it frustrating that you do not have logs for old
terminated containers available for inspection.

Logs entries relating to container lifecycle events may also be available from your container runtime (engine)
logs.

Application logs

In some situation there is not a lot Kubernetes can do to protect the applications it is running. For example,
Kubernetes cannot prevent an application from running vulnerable code. This means it is important to capture
and analyse application logs as a way to identify potential security-related issues.

Fortunately, most containerized applicationswill logmessages to standard out (stdout) and standard error (stderr),
which are then directed to the container’s logs. However, some applications send log messages to other locations
such as proprietary log files, so be sure to check your application’s documentation.

Actions performed by users

Most of your Kubernetes configuration will be done via the API server where all requests should be logged.
However, it is also possible to gain remote SSH access to control plane nodes and directly manipulate Kubernetes
objects. This may include local unauthenticated access to the API, as well as directly modifying control plane
systems such as etcd.

We’ve already spoken about limiting who has remote SSH access to nodes and bolstering security via things like
multi-factor authentication. However, logging all activities performed via SSH sessions and shipping those logs
to a secure log aggregator is highly recommended. As is the practice of always having a second pair of eyes
involved in remote access sessions.

Managing log data

A key advantage of containers is application density – we can run a lot more applications on our servers and in
our data centers. While this is great, it has the side-effect of generating massive amounts of logging and audit-
related data that can easily become too much to analyse using traditional tools. At the time of writing, there is
a lot of work being done to resolve this, including areas such as machine learning, but there is currently no easy
solution.

On the negative side, such vast amounts of log-related data makes proactive analysis difficult – too much data to
analyse. However, on the positive side, we have a lot of valuable data that can be used by security first-responders
as well as for post-event reactive analysis.
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Real world example

A great example of a container-related vulnerability, that can be prevented by implementing some of the best
practices we’ve discussed, occurred in February 2019. CVE-2019-5736 allows a container process running as root
to escape its container and gain root access on the host and all containers running on that host.

As dangerous as the vulnerability is, the following things that we covered in this chapter would’ve prevented the
issue:

• Vulnerability scanning
• Not running processes as root
• Enabling SELinux

As the vulnerability has a CVE number, security scanning tools would’ve found it and alerted on it. Also,
organizations that did not allow container processes to run as root will have been protected, as the issue only
affects processes running as root. Finally, common SELinux policies, such as those that ship with RHEL and
CentOS, prevented the issue.

All in all, a great real-world example of the benefits of defence-in-depth and other security-related best practices.

Chapter summary

The purpose of this chapter was to give you an idea of some of the real-world security considerations effecting
many Kubernetes clusters.

We started out by looking at ways to secure the software delivery pipeline by discussing some image-related
best practices. These included; how to secure your image registries, scanning images for vulnerabilities, and
cryptographically signing images. Then we looked at some of the workload isolation options that exist at different
layers of the infrastructure stack. In particular, we looked at cluster-level isolation, node-level isolation, and some
of the different runtime isolation options. We talked about identity and access management, including places
where additional security measures might be useful. We then talked about auditing, and finished up with a
real-world issue that could be easily avoided by implementing some of the best practices already covered.

Hopefully you now have enough understanding to go away and start securing your own Kubernetes clusters.



APPENDIX A: Other important stuff
There’s a lot more to Kubernetes and cloud-native applications than can fit in a single book. If we tried, we’d fill
volumes!

In this appendix, we’ll briefly mention some important Kubernetes features and projects that will take you to the
next level:

• Service meshes
• DaemonSets
• StatefulSets
• Jobs
• CronJobs
• Autoscaling
• RBAC
• Helm

Many of these will become their own chapters in future editions of the book. For now, let’s have a taste of each.

Service meshes

Cloud-native applications running on Kubernetes can be complex beasts and present challenges that didn’t
previously exist.

Consider the following…

We used to build and deploy complex applications as a single large monolith. This meant that most of the
application components and logic shipped as a single program and all communication between the different
components was internal over sockets and named pipes. Cloud-native applications are different as they break
application components and logic into lots of individual components (microservices) that have to communicate
over the network.

With this in mind we have several new and important considerations:

• How do we secure the traffic between all of the application microservices
• How to we get telemetry and visibility
• How do we effectively control traffic

Kubernetes is not designed or equipped to handle these, but service meshes are!

At the highest level, a service mesh is a form of intelligent network that can do things like:

• Automatically encrypt traffic between microservices
• Provide extensive application network telemetry and observability
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• Provide advanced traffic control such as; circuit breaking, latency-aware load-balancing, fault injection,
retries, and more…

There are many service mesh implementations, but the two leading technologies are Istio and Linkerd. They
both build on top of something called an envoy proxy and are implemented in a similar way. However, they
have slightly different scopes. Istio has a broader scope, at the expense of complexity. Linkerd has a smaller scope
and is arguably easier to implement and run. Both are popular, but at the time of writing Istio seems to be gaining
more community support and uptake.

Both are implemented as Kubernetes-native applications and run their own control plane on your Kubernetes
cluster.

Once deployed to your cluster, they are injected into your applications as sidecar containers. This involves
injecting a service mesh container into any application Pod that you want to be “on the service mesh”.

The service mesh sidecar container is based on the envoy proxy and sets up rules to intercept all network traffic
entering and exiting the Pod. This allows the service mesh sidecar container to do things such as:

• automatically encrypt all Pod-to-Pod communication
• send detailed telemetry to a central location
• implement circuit-breaking, A/B loading, fault injection and more

There can be a small performance overhead, but the cost is usually worth it.

The way a service mesh sidecar container is injected into Pods is via an admission controller. Admission
controllers inspect all objects being deployed to the cluster and can implement policies such as injecting service
mesh sidecars. A simple example might be a policy that injects a service mesh sidecar into every Pod being
deployed to the production Namespace.

Service mesh technologies are relatively new and can sometimes be hard to configure and work with. However,
many of the public clouds that offer hosted Kubernetes services allow you to deploy a service mesh as part of
the hosted service. These options give you a very simple way to deploy a service mesh, but they obviously only
work on the hosted platform.

Considering the benefits, a service mesh should be a top priority when deploying important production business
applications – nobodywants to be responsible for insecure applications with limited visibility into network traffic
flow, and limited options for influencing traffic.

DaemonSets

DaemonSets manage Pods and are a resource in the apps API group. They’re useful when you need a replica of a
particular Pod running on every node in the cluster. Some examples include; monitoring Pods and logging Pods
that you need to run on every node in the cluster.

As you’d expect, it implements a controller and a watch loop. This means that you can dynamically add and
remove nodes from the cluster, and the DaemonSet will ensure you always have one Pod replica on each of
them.

The following command shows two DaemonSets in the kube-system namespace that exist on a newly installed
3-node cluster.

The output is trimmed so that it fits the page.
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kubectl get ds -n kube-system
NAME DESIRED CURRENT READY NODE SELECTOR
kube-proxy 3 3 3 beta.kubernetes.io/arch=amd64
weave-net 3 3 3 <none>

Notice that desired state for each DaemonSet is 3 replicas. You do not need to specify this in the DaemonSet
YAML file as it is automatically implied based on the number of nodes in the cluster.

As well as the default behaviour of running one Pod replica on every cluster node, you can also run DaemonSets
against subsets of nodes.

DaemonSets are stable in the apps/v1 API group and can be managed with the usual kubectl get, and kubectl
describe commands. If you already understand Pods and Deployments, you will find DaemonSets really simple.

StatefulSets

StatefulSets are a stable resource in the apps/v1 API group. Their use-case is stateful components of your
application, such as Pods that are not intended to be ephemeral and need more order than is provided by
something like a Deployment.

Stateful components of a microservices application are usually the hardest to implement, and platforms like
Kubernetes have been somewhat slow to implement features to handle them. StatefulSets are step towards
improving this.

In many ways, StatefulSets are like Deployments. For example, we define them in a YAML file that we POST to
the API server as desired state. A controller implements the work on the cluster and a background watch loop
makes sure current state matches desired state. However, there are several significant differences. These include:

• StatefulSets give Pods deterministic meaningful names. Deployments do not.
• StatefulSets always start and delete Pods in a specific order. Deployments do not.
• Pods deployed via StatefulSet are not interchangeable. Pods deployed by Deployments are interchange-
able.

Let’s quickly look at each point a bit closer.

When a Pod is created by a Deployment, its name is a combination of the name of the Deployment plus a hash.
When a Pod is created by a StatefulSet, its name is a combo of the name of the StatefulSet plus an integer. The
first Pod deployed by a StatefulSet get integer 1, the second gets integer 2 and so on. This effectively names Pods
according to the order they were created. Scaling up a StatefulSet will cause the new Pod to get the next integer
in the list, and scaling down a StatefulSet will start by deleting the highest numbered Pod. Finally, when a Pod
managed by a StatefulSet fails, it is replaced by another Pod with the same name, ID, and IP address.

Potential use-cases for StatefulSets are any services in your application that maintain state. These can include:

• Pods that require access to specific named volumes
• Pods that require a persistent network identity
• Pods that must come online in a particular order
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A StatefulSet guarantees all of these will be maintained across Pod failures and subsequent rescheduling
operations.

Due to the more complex nature of stateful applications, StatefulSets can be complex to configure.

In summary, StatefulSets ensure a deterministic order for Pod creation and deletion based on the meaningful
name of each managed Pod.

Jobs and CronJobs

Jobs, a.k.a. batch jobs, are stable resources in the batch/v1 API group. They are useful when you need to run a
specific number of a particular Pod, and you need guarantees that they’ll all successfully complete.

A couple of subtleties worth noting:

1. Jobs don’t have the concept of desired state
2. Pods that are part of a Job are short-lived

These two concepts separate Jobs from other objects like Deployments, DaemonSets, and StatefulSets. Whereas
those objects keep a specified number of a certain Pod running indefinitely, Jobs manage a specified number of
a certain Pod and make sure they complete and exit successfully.

The Job object implements the usual controller and watch loop. If a Pod that the Job object spawns fails, the Job
will create another in its place. Once all the Pods managed by a Job complete, the Job itself completes.

Use-cases include typical batch-type workloads.

Interestingly, Jobs can be useful even if you only need to run a single Pod through to completion. Basically, any
time you need to run one or more short-lived Pods, and you need to guarantee they complete successfully, the
Job object is your friend!

CronJobs are just Jobs that run against a time-based schedule.

Autoscaling

The Deployments chapter showed us how to manually scale the number of Pod replicas. However, manually
scaling a set of Pods does not scale (excuse the pun). As an example, if demand on your application spikes at 4:20
a.m. it’s far from ideal if you need to page an operator who will then log-on to the cluster and manually increase
the number of replicas. The same applies if you need to scale the number of nodes to your cluster.

With these challenges in mind, Kubernetes offers several auto-scaling technologies.

TheHorizontal PodAutoscaler (HPA) dynamically increases and decreases the number of Pods in a Deployment
based on demand.

The Cluster Autoscaler (CA) dynamically increases and decreases the number of nodes in your cluster based
on demand.

The Vertical Pod Autoscaler (VPA) attempts to right-size your Pods, but it’s currently an alpha product.
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Horizontal Pod Autoscaler (HPA)

HPA’s are stable resources in the autoscaling/v1 API group and their job is to scale the number of replicas in a
Deployment based on observed CPU metrics. At the time of writing, the autoscaling/v2 API is being worked
on and will allow scaling based on more than just CPU.

It works like this… You define a Deployment that makes use of Pod resource requests – where each container in
the Pod requests an amount of CPU. You deploy this to the cluster. You also create an HPA object that targets
that Deployment and has a rule that says something like: if any Pod in this Deployment uses more than 60% of
its requested CPU, spin up an additional Pod.

Once the Deployment and HPA are deployed to the cluster, scaling operations become automatic.

One thing worth noting is that HPAs update the .spec.replicas field of the targeted Deployment. While this
update is recorded against the Deployment object in the cluster store, it can lead to situations where the copy
of the Deployment YAML file in your external version control system gets out of sync with what is currently
observed on the cluster.

Cluster Autoscaler (CA)

CAs are all about right-sizing your Kubernetes cluster. At a high-level, they increase and decrease the number
of nodes in your cluster based on demand.

Getting under the covers a little… CAs periodically check Kubernetes for any Pods that are in the pending state
due to lack of node resources. If it finds any, it adds nodes to the cluster so that the pending Pod(s) can be
scheduled.

This requires integrations with your cluster’s underlying infrastructure platform via a public API that allows
Kubernetes to add and remove nodes (cloud instances). The major cloud platforms implement Cluster Autoscaler
with varying levels of support. Check your cloud provider documentation for the latest support info.

Role-based access control (RBAC)

Kubernetes implements a least-privilege RBAC subsystem. When enabled, it locks down a cluster and allows you
to grant permissions based on specific users and groups.

The model is based on three major components:

• Subjects
• Operations
• Resources

Subjects are users and groups, and these must be managed outside of Kubernetes.Operations are what the subject
is allowed to do (create, list, delete etc.). Resources are objects on the cluster such as Pods. Put the three together,
and you have an RBAC rule. For example, Abi (subject) is allowed to create (operation) Pods (resource).

RBAChas been stable (v1) since Kubernetes 1.8 and leverages two objects that are defined in the authorization.rbac.k8s.io
API group. The two objects are Roles and RoleBindings. The Role is where you define the resource and the
operation that you want to allow, and the RoleBinding connects it with a subject.
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Helm

Helm is the de facto Kubernetes package manager and greatly simplifies installation and management of
Kubernetes applications.

Helm was accepted into the Cloud Native Computing Foundation (CNCF) in 2018 as an official top-level project.
As such, it sits alongside Kubernetes, Prometheus, gRPC, and others.

As a package manager, it’s like apt for Ubuntu and brew for Mac. In the case of Helm, it hides all the complexities
of things like Deployments, Pods, and Persistent Volumes in a construct called a chart. Think of a chart as the
Helm equivalent of a YUM, DEB, or homebrew package. As such, you can install, update, and delete Kubernetes
applications via the application’s Helm chart.

You can also share your charts with the community as well as re-use existing charts.

Summary

The idea of this appendix is to make you aware of some of the other important Kubernetes technologies so that
you have an idea of where you might want to go next. However, Kubernetes is huge, and we haven’t covered
everything.

The plan going forward is to make some of these topics their own chapters in future versions of the book. If you
can’t wait for that, I already cover Autoscaling, RBAC, and Storage in my Kubernetes Deep Dive video course
on acloud.guru.

https://acloud.guru/learn/kubernetes-deep-dive



What next
There are lots of ways to take your Kubernetes journey to the next level, and fortunately, most of them are easy.

Practice makes perfect

I know I’m being Captain Obvious with this one, but there’s no substitute for hands-on practice. Fortunately, it’s
never been easier to spin-up a Kubernetes playground where you can practice until you’re a world authority!

I recommend the following:

• Magic Sandbox (msb.com)
• Play with Kubernetes
• Docker Desktop

Magic Sandbox is a company that I have extremely close connections with (I’mHead of Content). It’s the ultimate
place for getting hands-on with your own private fully-functioning multi-node cluster. You also get curated labs
that you can follow along with, an amazing live dashboard that shows your cluster and applications in real-time,
and much much more. It’s a subscription-based service, but I highly recommend you check it out – it even has
a free tier for you to sample.
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Play with Kubernetes gets you a time-limited internet-based sandbox – you get 4 hours on your very own cluster.
It’s provided as a free service, so sometimes performance and availability aren’t good. But hey, it’s free.

Docker Desktop is a free desktop app from Docker, Inc. available for your Mac and PC. It includes a single-node
development cluster that’s great if you need something to play around with on your laptop.

Other options exist, and all of them are a lot simpler than how things used to be. I remember studying for my
MSCE in Windows NT and spending countless hours rebuilding NT domains from CD installs on dusty old
Compaq PCs in my bedroom. Things are so much simpler these days, there is no excuse for not getting our hands
dirty.

More books

I’ve got a book on Docker that’s had stellar reviews, including being named as Best Docker book of all time by
BookAuthority. Docker and containers are integral to Kubernetes, so if you need to know more about Docker
and container, check it out – it’s called Docker Deep Dive, and you can get it on Amazon and Leanpub.

Video training

If you liked this book, you’ll love my video courses!

• Kubernetes 101 (nigelpoulton.com)
• Getting Started with Kubernetes (pluralsight.com)
• Kubernetes Deep Dive (acloud.guru/learn/kubernetes-deep-dive)

I’ve also got several Docker courses on Pluralsight.

If you’re not a member of Pluralsight or A Cloud Guru, I recommend becoming one! Yes, they cost money, but
they could be the best investments you ever make into your career! A monthly subscription on each platform
gets you access to every course in that platform’s library – everything from developer to IT ops. And if you’re
unsure about spending your money, there’s usually a free trial where you can get free access for a limited time.

Events and meetups

You should hit events like KubeCon and ServiceMeshCon. There’s so many great people at these events and so
much to learn.

You should also get involved with your local Kubernetes, DevOps, cloud-native, and Docker meetups. Go to
meetup.com and type in “Kubernetes” or “DevOps” and it’ll find meetups in your local area. Alternatively you
can just type something like “kubernetes meetup Manchester” into Google and it’ll find your local meetups.

That’s it for now. Keep learning!
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Feedback

Massive thanks for reading my book. I’m humbled that you bought it and hope you loved it.

I’d really appreciate it if you’d:

• tell a friend or colleague about it
• leave a review on Amazon

It takes no time at all to write an Amazon review, and you can leave a review even if you bought the book form
Leanpub or somewhere else.

Also, feel free to hit me on Twitter².

And feel free to visit nigelpoulton.com to find all of my content, including; news & updates, latest YouTube
videos, workshops, webinars, and more.

That’s it. Live long and prosper…

²https://twitter.com/nigelpoulton

https://twitter.com/nigelpoulton
https://twitter.com/nigelpoulton
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